|
ホログラム関連機器 |
HARDWARE INFORMATION
2018-No.3 |
|
|
|
|
|
|
ホログラフィーとは、光の持つ「波長」「強度」「位相」の記録・再生を可能にする技術のことです。また、この光の情報を記録したものを指して「ホログラム」と呼びます。電子顕微鏡のレンズの収差を補正する目的で、1948年にGábor
Dénesによって発明され、1960年以降に干渉性に優れたレーザー光が出現してから、急速に研究が進展しました。現在では様々な種類のホログラムが存在しており、最も身近なホログラムといえば、日本円の壱万円札と五千円札の表面左下に印刷されているものが挙げられるでしょう。これは白色光を当てることによって観察できる「レインボーホログラム」で、お札の偽造防止を目的として用いられています。
物体は光源から出る光を反射し、私たちはその光を目によって受容することで物体を認識しています。光の波長・強度の差異が、私たちが認識する映像の色や明るさに影響します。
普段私たちがよく目にする写真は、物体が反射した光を記録し、2次元的に再生したものです。光を記録したものという点では写真もホログラムも同じと言えますが、ホログラムの特徴は、記録した光を現物と同じように立体的に再生する点です。ホログラムに光を当てると、物体がそこになくても、実際に存在しているように錯覚します。
写真では記録した角度以外の像を見ることができませんが、ホログラムの場合は、光そのものがもとの物体と同じように再生されるため、それぞれの角度からの物体の再生像を肉眼で見ることが可能になるのです(図1)。
|
図1 2D写真とホログラムの違い |
通常、ホログラムは物体に直接レーザ光を照射することで撮影されますが、「ホログラフィックステレオグラム」の手法では、対象を写真的な方法でさまざまな角度から撮影し、これらの複数枚の画像を合成することでホログラムを再生します(図2)。物体の波面を再生することはできませんが、両眼視差を利用して立体像を再現することができます。同じ考え方で、医療用にX線を用いて得られた像などでも、ホログラム化して立体像を生成することができます。
さらに、コンピュータ内部で計算によって視差のある画像を作成すれば、この手法によって現実には存在しない画像をデジタルに再現することができます。
|
図2 ホログラフィックステレオグラムの生成技術 |
ホログラフィーおよび立体表示の技術は、CDやDVDなどの光学部品や、アート作品などにも用いられている他、テレビやプロジェクターなどの機器にも利用されています。医療の現場では、臓器などをMRIでスキャンした画像をホログラフィー技術によって3D画像に変換し、直に観察するといったことも行われています。
また、昨今VR・AR・MRなどへの関心が高まる中で、立体像を表現できる機器の開発が進んでいます。現在はMicrosoft社の HoloLensが、ホログラム的な視覚体験を可能にするデバイスとして広まっており、フォーラムエイトでもUC-win/Roadと連携して、展示会などで紹介しています。このHoloLensは、透過型の部分に映像を多重化してMR(Mixed
Reality)的に表示することで、現実と立体表示映像(ホログラム)を合成する仕組みになっています(図3)。
さらに最近では、立体映像を裸眼で直接見ることができるホログラム・ディスプレイ「HoloPlayer One」(米国のLooking Glass Factoryが開発)のようなデバイスが公開され、話題を集めています。ヘッドマウントのデバイス等を通さずにホログラムを見ることができれば、複数人で映像を共有することが可能となり、展示や街頭の広告など、さまざまな目的での活用が考えられます。VRデータと連携したり、センサ技術や位置情報などの情報と結びつけるなどすることで、表現の可能性も大きく広がりそうです。
|
図3 HololensとUC-win/Roadの連携 |
|