5.計算(L2門柱・堰柱照査) |
|
|
Q5−1. |
塑性ヒンジ長は、どのように算出しているか |
A5−1. |
H14道示V 10.3.7(P155)に準じて、以下の式で算出します。
Lp = 0.2・h - 0.1・D
ただし,0.1D≦Lp≦0.5D
ここに、
Lp:塑性ヒンジ長
D:断面高さで、断面形状にかかわらず全高(慣性力作用方向の断面長)としています。
h:部材、構造形式応じて、以下の値になります。
操作台:柱の軸線間距離の1/2
門柱:単柱の場合は、門柱基部から上部工慣性力作用位置までの高さ
ラーメン形式の場合は、門柱基部から操作台軸線位置までの高さの1/2
堰柱:堰柱基部から地震時の全水平荷重の作用重心までの高さで、結果画面「結果確認|レベル2(門柱,堰柱)」のタブ「結果詳細」のボタン「Wp,Wu,hc算出」で表示される「死荷重慣性力」ケースの反力を使ってhc=|RM/RX|で算出されます。
詳細は、ヘルプ「計算理論および照査の方法|塑性ヒンジ長」をご参考下さい。
|
|
|
Q5−2. |
門柱、堰柱のレベル2照査の計算で使用される上部工慣性力作用位置は、どのように算出されるか |
A5−2. |
上部工慣性力作用位置の計算は、入力オプションで変化します。
入力オプションは、入力画面「入力|計算条件」のタブ「レベル2」にある「上部構造の慣性力作用位置」で設定します。
・操作台(梁)軸線位置
操作台の骨組位置を上部工慣性力作用位置とします。
・上部構造重心位置
操作台上の任意荷重の重心位置とします。
具体的には、入力画面「入力|荷重」のタブ「任意荷重|任意死荷重|操作台(梁)」で定義された荷重のうち、「慣性力」を「考慮」とし、かつ、「上部工荷重」を「はい」とした荷重の重心位置となります。
上部工慣性力作用位置の計算詳細を、結果画面「結果確認|レベル2(門柱,堰柱)」のタブ「結果詳細|照査結果」の項目「慣性力作用高」で確認することができます。(ただし、「主たる塑性化が生じる部材」が「堰柱」の場合は計算で使用しないため、表示されません。)
詳細は、ヘルプ「計算理論および照査の方法|上部構造慣性力作用位置」をご参照下さい。
|
|
|
Q5−3. |
レベル2照査結果の結果概要画面で「エラー:堰柱の塑性回転バネ値の算出に失敗しました」と表示され、堰柱のMu値が0kN.mとなっている |
A5−3. |
堰柱断面の軸力が、Muを計算できる最小軸力(圧縮力を正)を下回っている可能性があります。
最外縁の圧縮鉄筋量がそれ以外の鉄筋量と比較して大きい程、Muを計算できる最小軸力が大きくなるためこのエラーが発生している場合があります。
Muを算出できる最小軸力Nminは、
Nmin = σsy×[最外縁の圧縮側鉄筋量]−σsy×[それ以外の鉄筋量]
で計算されます。
最小軸力を小さくすることでこのエラーを回避する場合は、側面鉄筋や引張側鉄筋量など、最外縁圧縮鉄筋量以外の鉄筋量を増やすことが有効です。
|
|
|
Q5−4. |
レベル2照査において、計算オプションで「My0>Muとなった場合の処理」を「(Mu,φu)を(My0,φy0)とする」としたところ、「エラー:θpu≒0°のため終局変位を算出できません」が発生した |
A5−4. |
「河川構造物の耐震性能照査指針(案)一問一答 平成19年11月」問.W−4−20を参考にこの計算オプションを設けました。
「(Mu,φu)を(My0,φy0)とする」方法は、My0>Muとなる塑性ヒンジ候補点が塑性化した場合、終局変位を算出する際にH14道示Xの式(解10.8.3)(P187)で、φu=φyとなるためθpu=0°になってしまいます。
同オプションで、「My0をMuとする」を選択すれば、このエラーはなくなります。
また、このM-φ関係修正で降伏剛性が変化しないようにするためには、「φyを同比率で縮小する」をチェックしてください。
|
|
|
Q5−5. |
地震時保有水平耐力法に用いる等価重量Wpが、慣性力方向ごとや、地震動タイプごとに異なるのはなぜか? |
A5−5. |
Wpは躯体の震度が1.0の時の慣性力に相当する重量で、躯体重量の他に、ゲート慣性力、動水圧を考慮します。端堰柱の場合は土圧も考慮します。
動水圧を考慮するため、上流→下流、下流→上流の照査時に考慮する水位の違いによりWpは変化します。
また、土圧、ゲート慣性力を考慮するため、水流直角方向の左→右、右→左方向で照査するWpにも相違が発生する可能性があります。
端堰柱の場合は、入力画面「計算条件」のタブ「設計水平震度」の「堰柱の震度」を「地盤面の震度を適用する」に設定すると、堰柱部(堰柱自重、動水圧、ゲート)のWpは躯体の震度1.0時の地盤面の震度khgの比率で換算します。
このため、khgが地震動タイプに応じて異なる場合は、堰柱部のWpは地震動タイプごとに異なります。
|
|
|
Q5−6. |
凹凸のある断面形状のM-φ算出やせん断耐力は、どのように計算しているか |
A5−6. |
土木研究所資料「地震時保有水平耐力法に基づく水門・堰の耐震性能照査に関する計算例 平成20年3月」のP14では、「M-φの算出に当っては、突起部や切り欠き部も含め、鉄筋が配置されている全ての範囲を考慮して算出するのがよい」とあります。
本製品では、これを参考としてレベル2のM-φ算出断面は全形状を考慮します。
また、せん断耐力についても上記資料のP15、P16の考え方を参考として、突起部を無視した矩形範囲から算出します。
|
|
|
Q5−7. |
等価重量Wの算出に、H14道示X「6.4.6 鉄筋コンクリート橋脚の照査」で記されているCpが考慮されていないのはなぜか |
A5−7. |
本製品は「土木研究所資料 地震時保有水平耐力法に基づく水門・堰の耐震性能照査に関する計算例 平成20年3月」を参考とした照査方法を行っています。
この資料のP1で、
「・道路橋は上部構造が重量の大部分を占めるトップヘビーな構造であるため、慣性力を1つの集中荷重に集約して考えることができ」るのに対して、
「水門・堰の・・・重量はさほど大きくないため、必ずしもトップヘビーではない。したがって、慣性力の作用位置を1点に集約することが困難」
であることが記されています。
このため、同資料のP25、P26のように、震度で地震時保有水平耐力照査を行っており、
このときの慣性力は、1つの集中荷重に集約することをせず、骨組モデルを作成して、門柱の自重も考慮した慣性力を、その発生箇所に載荷しています。
Cpは、H14道示X P100の解説で、
「曲げ破壊型と判定された場合の橋脚の等価重量を橋脚重量の1/2としたのは,上部構造の慣性力の作用位置に等価重量を作用させた場合の曲げモーメントと橋脚に等分布に慣性力を作用させた場合の曲げモーメントが基部で等しくなるようにしたものである。」
と記述されています。
Cpは、慣性力を上部構造の慣性力作用位置に集約させた場合に必要となる、橋脚重量の作用高さを考慮した補正係数です。
しかし本製品のL2照査では、前述の通り、慣性力を1つの集中荷重に集約していないため、Cpを考慮しません。
|
|
|
Q5−8. |
せん断破壊型で終局水平耐力が決定した。終局水平耐力到達時の断面力を参照したい。 |
A5−8. |
結果画面では、「レベル2(門柱,堰柱)」のタブ「結果詳細|照査結果」の「Pa到達時の断面力」で、各塑性ヒンジ点の断面力表を表示します。
計算書では、出力オプション「レベル2(門柱、堰柱|照査結果|詳細|Pa到達時断面力表」にチェック(レ)を入れることで各塑性ヒンジ点の断面力表を出力します。
|
|
|
Q5−9. |
入力画面「計算条件」のタブ「レベル2」で「操作台(梁)の塑性化」を考慮する/しないは、何に影響するか。 |
A5−9. |
骨組モデルと照査項目に影響します。
- 骨組モデル
操作台の塑性化を考慮しない場合は、操作台の塑性ヒンジ候補点を作成せず、操作台部材の剛性を全断面有効とした値に設定します。
操作台の塑性化を考慮する場合は、操作台の塑性ヒンジ候補点を作成し、操作台部材の剛性を降伏剛性に設定します。
- 照査項目
操作台の塑性化を考慮しない場合は、「土木研究所資料第4103号 地震時保有水平耐力法に基づく水門・堰の耐震性能照査に関する計算例 平成20年3月」に沿った照査を行います。
この資料のP.105、P.165を参考に、門柱が終局したときに操作台の断面力が耐力以下になっているかを照査します。
この結果がNGの場合、「操作台の塑性化を考慮しない」設定が成立しないことになります。
操作台の塑性化を考慮する場合は、線形部材端照査と、塑性化した箇所のせん断照査を行います。
線形部材端照査は、H14道示X P182の解説「柱部材の上端部,下端部そしてはり部材の端部以外の箇所に塑性ヒンジを生じさせてはならない」に対する照査で、塑性ヒンジ領域の端部が塑性ヒンジ点より先に塑性化していないか(Muに達していないか)を照査します。
操作台のせん断照査は、H14道示X の式(10.8.4)(P.181)によるもので、操作台(はり)に塑性ヒンジが生じた場合に行います。
この照査の詳細が、P.187の解説に記載されています。
|
|
|
Q5−10. |
レベル2照査でMc≦My0≦Muが成立しない要因は何が考えられるか |
A5−10. |
鉄筋量が少ない場合に、Mc>My0になりやすい傾向があります。
断面高に対して鉄筋のかぶりが大きい場合に、My0>Muになりやすい傾向があります。
|
|
|
Q5−11. |
門柱、堰柱のレベル2照査で使用する上部重量Wu、柱部重量Wpの算出根拠は? |
A5−11. |
Wu、Wpで考慮する荷重は、ヘルプ「計算理論および照査の方法|レベル2|躯体重量Wpと上部重量Wu」をご覧ください。
この値は骨組解析により算出しています。
骨組モデルとその解析結果は、結果画面「結果確認|レベル2(門柱、堰柱)」のタブ「結果詳細」内のボタン「Wp、Wu、hc算出」により確認することができます。
計算書では、計算書の出力項目設定で「レベル2(門柱、堰柱)|重心位置等算出骨組データ」にチェックを入れることで「レベル2(門柱、堰柱)結果|水流(または水流直角)方向|慣性力および重心位置」の章に出力します。
|
|
|
Q5−12. |
「Mu算出で軸力が適用範囲外となりました」などのエラーが表示されるが、照査は行われている。照査結果に問題はないか。 |
A5−12. |
このエラーは、主に門柱で発生します。 この場合、主たる塑性化が生じる部材が堰柱であれば、照査に影響しません。 また、主たる塑性化が生じる部材が門柱であっても、破壊形態が曲げ破壊型以外の場合は、終局変位が求められなくても照査のエラーにはなりません。 H14道示XP180の式(10.8.3)のように、曲げ破壊型以外の場合の許容塑性率μaは1.0の固定値で、終局変位を使用しないためです。
なおVer.5において、入力画面「計算条件」のタブ「レベル2」にチェックボックス「曲げ破壊型以外の場合の場合でも終局変位δuを算出する」を追加しました。 このチェックをオフにした場合、曲げ破壊型以外の場合に使用しない終局変位の表示、出力を行いません。
|
|
|
Q5−13. |
結果確認画面の解析状態に「構造が不安定となる直前の第Xステップを終局ステップとしました。」と表示される。
この結果を採用してもよいか。 |
A5−13. |
ラーメン構造の門柱が既定の塑性ヒンジ数に達しない状態で構造が不安定となった場合にこの警告を表示しています。
通常、2柱式の場合は4ステップ、3柱式では7ステップを終局ステップとします。
しかし、特に3柱式のモデルは、この最終ステップに達する前に構造系が不安定となる場合があります。
そのとき、その不安定となる直前を終局ステップとして終了するようにしています。
構造系が不安定となる直前の結果を採用していることには相違ありませんので、この結果を採用しても問題ないと思います。
なお、この結果の最終的な適用につきましては設計者のご判断により決定していただきますようよろしくお願いいたします。
|
|
|
Q5−14. |
許容残留変位が0mmになる |
A5−14. |
入力画面「計算条件」のタブ「レベル2」で「耐震性能」を「耐震性能2」とし、「残留変位の照査」で「ローラ径t」と「戸当り幅b」を同値にした場合、水流方向の許容残留変位は0mmになります。
また、「耐震性能2」として、入力画面「形状」のタブ「モデル寸法|ゲート」で、「ゲート位置における左(または右)側堰柱間距離」と「左(または右)側のゲートの長さ」を同値にした場合、水流直角方向の許容残留変位は0mmになります。
許容残留変位の算出方法については、ヘルプ「計算理論および照査の方法|レベル2|残留変位の照査」の「許容残留変位の算出」をご覧ください。
|
|
|
Q5−15. |
結果画面「レベル2(門柱,堰柱)」のタブ「結果詳細|照査結果」の「破壊形態」の表のせん断力が、一部、赤色や青で表記されている |
A5−15. |
せん断力Siがせん断耐力Ps0iを超えたときに赤色で表記しています。
せん断力Siがせん断耐力Psiを超えてPs0i未満のときに青色で表記しています。
表に、赤色の数字が1つでも存在すれば、せん断破壊型です。
表に、赤色の数字が存在せず、青色の数字が1つでも存在すれば、曲げ損傷からせん断破壊移行型です。
表に、赤色の数字も、青色の数字も存在しない場合は、曲げ破壊型です。
※この表の赤色、青色は照査結果のOK/NGを示すものではありません。
|
|
|
Q5−16. |
レベル2-2は曲げ破壊型になったが、レベル2-1はならない。理由は? |
A5−16. |
地震動により、コンクリート応力度−ひずみ曲線や、せん断耐力等が異なりますので、破壊形態が同じになるとは限りません。
原因の1つとして、レベル2-1のせん断耐力Psiが、レベル2-2と比較して小さくなることが挙げられます。
理由は、H14道示Xの式(10.5.2)(P164)の係数ccにあります。
この係数は、P164のccの説明のように、レベル2-1では0.6、レベル2-2では0.8を使用します。
せん断耐力Psiが小さくなると、H14道示Xの式(10.8.1)の曲げ破壊型の条件「Si≦Psi」を満足しにくくなります。
|
|
|
Q5−17. |
入力画面「計算条件」のタブ「レベル2」の「Mc>My0,Muとなった場合」に「(Mc,φc)を(My0,φy0)とする」の選択は、何を参考としたものか
|
A5−17. |
「土木研究所資料第4103号 地震時保有水平耐力法に基づく水門・堰の耐震性能照査に関する計算例 平成20年3月」のP22に、
「部材の断面が非常に大きく、軸方向鉄筋比が小さくなっているような場合には、終局水平耐力Pu がひびわれ水平耐力 Pc より小さくなることがある。…
…PuがPcを下回っている既設構造物については、やむを得ず、ひびわれ耐力Pc を無視して荷重−変位関係を与えるという判断も考えうる。」
の記述があり、これを参考としています。
|
|
|
Q5−18. |
H14道示X 6.4.6では耐震性能2の場合に残留変位の照査を行うとしているが、耐震性能3でも照査するのはなぜか |
A5−18. |
河川構造物の耐震性能照査指針・解説 W.水門・樋門及び堰編 令和2年2月の「6.5.1 門柱・堰柱の照査」では、耐震性能3の場合の残留変位の照査が規定されているため、これに従っています。 この解説では、耐震性能2と耐震性能3で許容残留変位の算出方法が異なります。
|
|
|
Q5−19. |
レベル2地震動照査の堰柱基部の照査で考慮される「kha割増し」の係数1.1は、何の数字か |
A5−19. |
「土木研究所資料第4103号 地震時保有水平耐力法に基づく水門・堰の耐震性能照査に関する計算例 平成20年3月」P102に記載されている値で、本製品では入力画面「計算条件」のタブ「レベル2」の「門柱が塑性化する時堰柱の照査に使用するkhaGの割増係数」で入力します。
初期値は資料の計算例と同じ1.10としています。
この値は、門柱と堰柱の耐力が近接することを避け、塑性化が生じる部材を明確化するための係数と記述されています。
|
|
|
Q5−20. |
コンクリート応力度−ひずみ曲線は、「橋脚の設計・3D配筋」の考え方と同じと考えてよいか |
A5−20. |
本製品の保有水平耐力照査はH14道示Xに準拠していますので、コンクリート応力度−ひずみ曲線の考え方は「橋脚の設計 Ver.9」と同じです。
「橋脚の設計 Ver.9」で、「終局ひずみεcuに下降勾配Edesを考慮する」のチェックを外すことは、「水門の設計計算」の入力画面「計算条件」のタブ「レベル2」で、「道示X10.6に規定されている横拘束筋の構造細目を満たしているか」の条件を「満たしていない」とすることと同じです。
「橋脚の設計Ver.9」で「帯鉄筋を横拘束筋として考慮する」のチェックを外すことは、「水門の設計計算」の入力画面「鉄筋/断面条件」のタブ「斜引張鉄筋/横拘束筋」の「断面積Ah」の値を0.0mm2に設定することと同じです。
|
|
|
Q5−21. |
曲げ破壊型にならないので、終局変位の出力を削除したい |
A5−21. |
Ver.5で、曲げ破壊型以外の場合に終局変位の算出を行うかの設定を追加しました。 入力画面「計算条件」のタブ「レベル2」のチェックボックス「曲げ破壊型以外の場合でも終局変位δuを算出する」のチェックを外すことで、終局変位等の計算に影響しない出力が省略されます。
|
|
|
Q5−22. |
堰柱を地盤面の震度をとしたモデルに対して、堰柱が塑性化した場合でも、計算書ではkh<khaを照査しており、kh=cZ・kh0としている。 この場合は、khg<khaを照査すべきではないか。 |
A5−22. |
本製品のプッシュオーバー解析時の慣性力は水平震度で表現していますが、門柱の震度がkhiのとき、地盤面の震度を適用した堰柱には、khi×khg/Cz・khoの震度を与えています。
本製品の照査式kh<khaは門柱の震度で表現したものですが、堰柱の震度で表現すると、両辺に[khg/Cz・kho]を乗じることになります。
このため、門柱の震度で表現しても、OK、NGの判定は変わりません。
|
|
|
Q5−23. |
堰柱のせん断スパンを、橋脚のようにはり天端位置、またははり下端位置等とせず、慣性力の重心位置としているのはなぜか。 |
A5−23. |
本製品のレベル2地震動照査は、慣性力として自重、動水圧等を考慮することから、堰柱基部のせん断スパンは慣性力の重心位置までの高さとしています。 慣性力の重心位置は、「土木研究所資料第4103号 地震時保有水平耐力法に基づく水門・堰の耐震性能照査に関する計算例 平成20年3月」の図−付2.3(P192)の「堰柱基部から地震時の全水平荷重の作用重心までの高さhc」で表され、hcは堰柱基部の曲げモーメントとせん断力の比で求められます。
この資料のP1に「・道路橋は上部構造が重量の大部分を占めるトップヘビーな構造であるため、慣性力を1つの集中荷重に集約して考えることができ、…。一方、水門・堰のゲート操作台及び操作室の重量はさほど大きくないため、必ずしもトップヘビーではない。したがって、…」の記述があります。 このため、橋脚を対象に規定された構造物寸法で決定されるせん断スパンではなく、H24道示Wの図−解5.1.1(P174)のように、基部から作用荷重までの距離で決定する仕様としています。
|
|
|
Q5−24. |
せん断破壊型を曲げ破壊型にしたい。 |
A5−24. |
終局ステップ時のせん断力がせん断耐力を超えている場合に、せん断破壊型、または曲げ損傷からせん断破壊移行型になります。 曲げ破壊型とするためには、この箇所のせん断耐力を大きくする必要があります。 せん断耐力がせん断耐力を超えている箇所は、結果画面「レベル2(門柱,堰柱)」のタブ「結果詳細|照査結果」の「破壊形態」のページで表示される表でわかります。 この表のStepNのせん断力が青文字、または赤文字の場合は、せん断力がせん断耐力を超えていますので、この部材のせん断耐力を大きくする必要があります。 せん断耐力には帯鉄筋が影響しますので、入力画面「鉄筋/断面条件」のタブ「斜引張鉄筋/横拘束筋」の斜引張鉄筋量Awを大きくするか、またはその間隔aを小さくする方法が考えられます。
|
|
|
Q5−25. |
許容塑性率算出時の安全係数αはどのように設定されているか。 |
A5−25. |
河川構造物の耐震性能照査指針R2.2対応版であるVer.6以降は、耐震性能2の場合は1.5、耐震性能3の場合は1.2としています。 Ver.5以前は、 耐震性能2のレベル2-1は3.0、レベル2-2は1.5、 耐震性能3のレベル2-1は2.4、レベル2-2は1.2、 としています。
|
|
|
Q5−26. |
門柱、堰柱のレベル2照査結果で「堰柱基部の照査」が「照査不要」と表示されるのはなぜか。 |
A5−26. |
本製品は、「土木研究所資料第4103号 地震時保有水平耐力法に基づく水門・堰の耐震性能照査に関する計算例 平成20年3月」を参考としています。 「堰柱基部の照査」は、この計算例資料のP.102「5) 堰柱の照査」を行います。 この照査は、門柱に主たる塑性化が生じる場合に行います。 主たる塑性化部材が「堰柱」と判定された場合は、照査不要と表示しています。
|
|
|
Q5−27. |
入力画面「計算条件」のタブ「レベル2」の「Mc>My0、Muとなった場合」の選択、「警告を表示する」と「計算エラーとする」の違いは何か。 |
A5−27. |
プッシュオーバー解析によるラーメン構造の照査では、Mcを使用しません。 Mc>My0となった場合、「警告を表示する」を選択した場合は警告を表示して計算を続行します。「計算エラーとする」を選択した場合はエラーを表示して計算を中断します。 ただし、堰柱や単柱式門柱の照査ではMcを使用しますので、Mc>My0となった場合、どちらを選択しても計算を中断します。
|
|
|
Q5−28. |
段差のある堰柱床版の釣合い鉄筋量は、どのように計算しているか。 |
A5−28. |
水流直角方向の段差のある堰柱断面の釣合い鉄筋量は、収束計算でMy≒Muとなる引張鉄筋量を算出しています。
釣合い鉄筋量に関する詳細は、ヘルプ「計算理論および照査の方法|レベル2|堰柱床版の照査」をご覧ください。
|