UC-win/FRAME(3D)におけるダンパーのモデル化

2009/11/27 株式会社フォーラムエイト

1. 概要

Rayleigh 型の粘性減衰マトリクスは下式で定義される。

$$[C] = \alpha[M] + \beta[K]$$

ここで,

- [C]:モデル全体の粘性減衰マトリクス
- [M]:モデル全体の質量マトリクス
- [K] :モデル全体の剛性マトリクス
- *α* : 質量マトリクスに乗じる係数

β:剛性マトリクスに乗じる係数

この式が表わすように、通常の Rayleigh 型減衰では、係数 $\alpha \ge \beta$ はマトリクス全体に 乗じられるため、モデル内の要素すべてに対し共通の値となってしまう。これでは、粘 性減衰を無視したい要素にも、結果的に粘性減衰を付加した解析結果を得ることになる。

特に、ダンパーなどは初期剛性が大きく、"通常の" Rayleigh 型減衰を用いると上式の $\beta[K]$ 項が大きくなり、その結果[C]が大きくなる。

"要素別" Rayleigh 型減衰は、このような不合理を解消するために考案されたもので、 要素ごとに係数 α と β を与えられるようにしたものである。UC-win/FRAME(3D)はこの"要 素別" Rayleigh 型減衰に Ver.3.00.00 より対応しており、過大な粘性減衰導入を回避するこ とが可能となった。

解析の流れを以下に示す。

- Step1: ダンパーがないモデルで固有値解析を行い, Rayleigh 減衰のパラメータ α , β を算出する。
- Step2: ダンパーを設置したモデルに対して α , β を任意設定する。
- Step3: ダンパーをモデル化したバネ要素に対してβをゼロに変更する。
- 以下,具体的な手順を示す。

2. 操作手順

はじめに、この資料は手順を示すためのものであり、表示されている数値および形状 は全く根拠のない架空のものである。

Step1: ダンパーを設置しないモデルで固有値解析を行う

可動支承である A1 と A2 にダンパーを設置すると想定する。 可動支承のまま固有値解析を行い, α=0.50112, β=0.00077 を得る。

Step2: ダンパーを設置したモデルに対して α と β を任意設定する

モデルの違いを明確にするため、下図のように支承から離れた位置にダンパーをモデル化したバネ要素を設定している。実際は、Step1のモデルの可動支承を置き換えれば良い。

「モデル | 減衰定数と固有値解析」を開く。

ļ	👸 For	UM 8 U	C-win/F	RAME(3D) - 02_ダンパーあり.f3d		
	ファイル	ル(F) 編	i集(E) (モデル(M) 表示(V) 結果(R) オプション(0)	(H)
(F 🗣	📛 🔒	2	節点(N)	۲	
Γ	伊モテ	デル 冒	アウトラ	部材(O)	×	₭ 横拘束材料 ↓ ② 材料 ↓ 平 ばね特性 ↓ ~ 地震波 ↓
	-!- ^	m N	名 🖬	ばね要素(P)	•	前材分割数:1 合 節占 、 利 本 熱 ② 12
			· • •	剛体要素(Q)		
	節点	要素	グルー:	活荷重(R)	•	- 3. 象 マ > 5 5 5 5 5
	名称	X (m)	Y (m)	グループ(S)		
	j-101	-19.750	0.650	荷重の編集(T)		
	j-102	-19.750	1.950	荷重テーブル(U)		
	j-103	-17,800	1.950			
	j-104	-15.850	1.950	何重ケー人の編集(V)		
	j-105	-13,900	1.950	鋼製部材用ひずみ照査の設定(W)		
	j-106	-11.950	1.950	エデル 設定(V)		
	j-107	-10.000	1.950			L
	j-108	-8.050	1.950			
	j-109	-6.100	1.950	減衰定数と固有値解析(Z)		
	j-110	-4.150	1.950	4511 15		
	1.111	0.000	1.050	4.611		

「詳細タブ」の「任意設定」にチェックを入れ、Step1 で算出した $\alpha \ge \beta$ を入力する。

🖻 減衰定数と固有値解析			
一覧 詳細 経索別減衰バラメータ			
3	点ケース 分布ばねケース	ス 計算 減衰の種類	概要
ラン:橋軸方向 支	点ケース1 〈〈なし〉〉	✔ Rayleigh型	α = 0.50112, β = (🔻
計算するモード数	表示するモード数		
 ● デフォルト ○ 任意設定 40 	○ デフォルト (20Hz) ○ 任:	意設定 10.000 Hz	 全て表示
減衰の種類:	剛性:		ファイバー要素への適用方法:
○要素別剛性比例型 ◎ Rayleigh減多	! 2 (2) 利用 	瞬間剛性	■断面内の全材料を考慮(CAMS)
モードの選択方法:	振動数とモード減衰定数の限	1条図:	
 刺激係数最大時(全体) 刺激係数最大時(公方向) 刺激係数最大時(公方向) 			
◎ 刺激係数最大時(Z方向)	薮		
 ● 任意設定 α: 050112 	减低		
 			
計算値:			
α: 050112			
β: 0.00077			
固有値解析の結果: 🙈 甲珪素物医具	い 一方林安县い	◎ 方物研具	◎ 市底對(交形)

Step3: ダンパーをモデル化したバネ要素に対してβをゼロに変更する

要素別減衰パラメータタブを開く。すべての要素に対して、 $\alpha \ge \beta$ が共通であることを確認する。

۴ 💦	載宴定数と	同有値解析						
-5	ā 詳細	要素別減衰)	ミメータ					
	名称			ケース	分布ばねケー	-ス 計算	減衰の種類	概要
152	: 橋軸方(5]	支点	ミケース1	<	~	Rayleigh型	α = 0.50112, β = (🔻
減泵	気定数とRay	leigh型の設定			- 0	1 🗣 🕄	L 🟟 🗟 >	• 56 56 • I
	名称	減衰定数:h	タイプ	a	β	Ý	n 2	◎ 至 (表示
圈明	本要素 :j=10		デフォルト	0.50112				ファイバー要素への適用方法:
書64		0.02000	デフォルト	0.50112	0.00077	z	x	■ 断面内の全材料を考慮(CAMS)
書[4	时:j=103	0.02000	デフォルト	0.50112	0.00077			1
書[4		0.02000	デフォルト	0.50112	0.00077	1752		
書64	财 :j=105	0.02000	デフォルト	0.50112	0.00077			
書64	时:j-106	0.02000	デフォルト	0.50112	0.00077			
書64	材 :j=107	0.02000	デフォルト	0.50112	0.00077			
音64	材 :j-108	0.02000	デフォルト	0.50112	0.00077			
音科	材 :j-109	0.02000	デフォルト	0.50112	0.00077			
音科	材::j=110	0.02000	デフォルト	0.50112	0.00077			
音科		0.02000	デフォルト	0.50112	0.00077			
普科		0.02000	デフォルト	0.50112	0.00077			
普科		0.02000	デフォルト	0.50112	0.00077			
# 64	时::i=204	0.02000	デフォルト	0.50112	0.00077			

ダンパーをモデル化したバネ要素の行の「デフォルト」をダブルクリックし、「任意設 定」に変更する。

剛体要素 :A1-c		デフォルト	0.50112	
圆(木亜去·A2-a		デフォルト	0.50112	
lばね要素 :BMS	0.0000.0	デフォル 🚽		0.00077
lばね要素 :BMS	0.0000.0	デフォルト		0.00077
支点:A1-7	0.10000	任意設定人		0.00077
支点:A2-7	0.10000	デフォルト		0.00077
支点:P1-9	0.10000	デフォルト		0.00077
ſ				· ·
固有値解析				

βに「0」を入力する。

ばね要素 :P1-s	0.0000.0	デフォルト		0.00077
剛体要素 :A1-c		デフォルト	0.50112	
剛体要素 :A2-c		デフォルト	0.50112	
lばね要素 :BMS	0.00000	任意設定		0.0000.0
lばね要素 :BMS	0.00000	デフォルト	4	000427
支点:A1-7	0.10000	デフォルト		0.00077
古古・42-7	010000	デフォルト		0.00077

解析を行う全てのランに対して、上記減衰パラメータの設定を行う必要がある。 設定が終了したら固有値解析を行わずに、時刻歴応答解析を実行する。