表紙

目次	
1章 設計条件	1
1.1 一般事項	1
1.2 基本データ	1
1.3 考え方	4
1.3.1 縦梁	4
1.3.2 均しコンクリート	4
1.4 地層データ	4
1.5 基準値	5
1.5.1 設計用設定値	5
1.5.2 鋼材	5
2章 結果一覧	7
2.1 ライナープレート	7
2.2 支保工	7
3章 土圧の算定	8
4章 横断面の設計	9
4.1 設計位置 G.L4.000 m	9
5章 支保工の設計	13
5.1 縦梁の設計	13
5.2 腹起しの設計	15
5.3 切梁の設計	19
5.4 均しコンクリートの設計	23
6章 構造解析結果	24
6.1 横断面の設計 G.L4.000 m	24

1章 設計条件

保存ファイル名:Sample-12(Rectangle-Supporting).F7L

1.1 一般事項

1.2 基本データ

適用基準

ライナープレート設計・施工マニュアル

形状

立坑形式 : 矩形立坑

立坑寸法

短径 S : 2.421 m 長径 L : 5.404 m 長さ H : 4.000 m 支保工 : 設置する

土圧

算定式:静止土圧の式偏土圧:考慮しない地すべり土圧:考慮しない

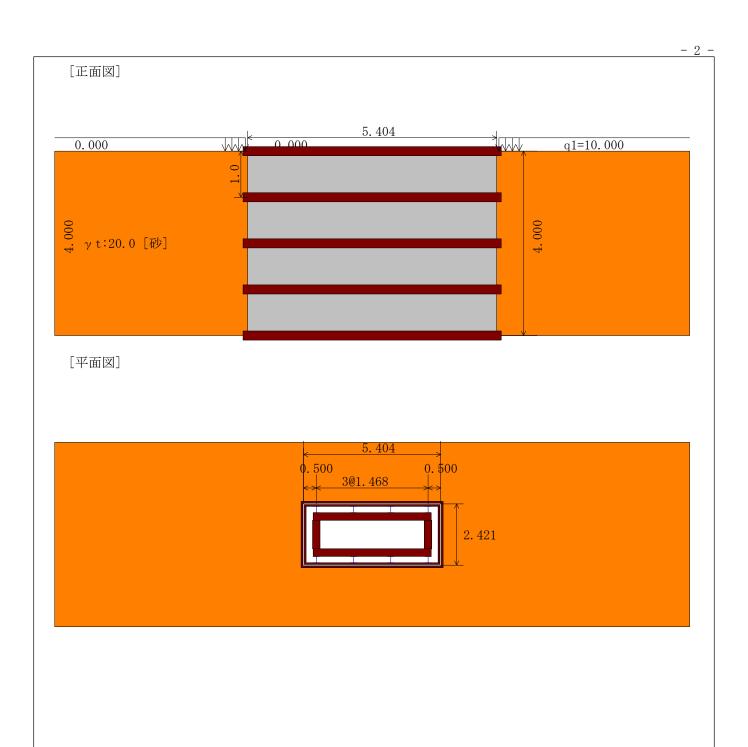
上載荷重

上載荷重 q1 : 10.000 kN/m²

地下水位の影響

地下水位の影響 : 考慮しない

任意の土圧


 任意の土圧
 : 一定としない

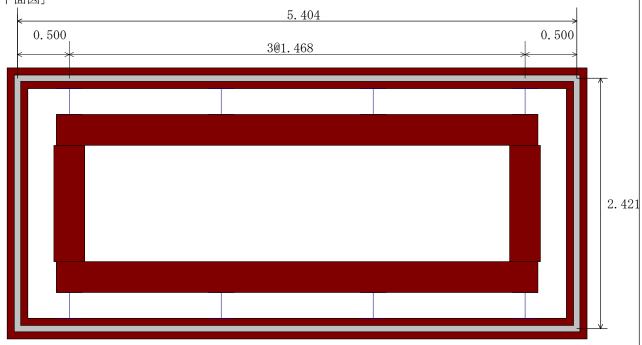
 均しコンクリート
 : 設置する

横断面の設計

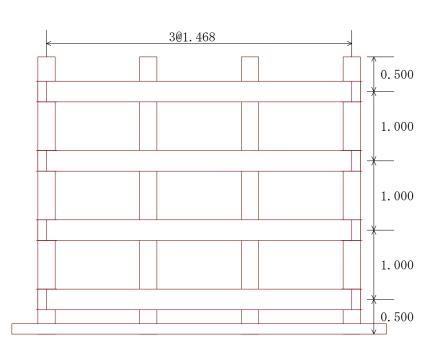
Frame計算 : 使用する

分割数短辺:20長辺:20

ライナープレートの配置


天端 G.L. 0.000 m

No	区間長 m	ライナープレート 鋼材No	ライナープレート 鋼材名称	補強材ピッチ m	補強材 鋼材No	補強材鋼材名称
1	4.000	1	LinerPlate t2.7 mm	1. 0	5	$H-200\times200\times$ 8×12


No	区間長 m	ボルトNo	ボルト名称
1	4.000	3	M20

支保工

[正面図]

縦梁

縦梁の端部設置幅 0.500 m 端部縦梁と切梁のずれ 0.000 m

スパン数	鋼材No	鋼材名称
3	6	$H-250\times250\times 9\times14$

腹起し

No	架設深さ G. L. (m)	鋼材No	鋼材名称
1 2 3 4	-0. 500 -1. 500 -2. 500 -3. 500	7 7 7 7	$\begin{array}{l} H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \end{array}$

切梁

No	架設深さ G. L. (m)	鋼材No	鋼材名称
1	-0. 500	7	$\begin{array}{l} H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \end{array}$
2	-1. 500	7	
3	-2. 500	7	
4	-3. 500	7	

切梁本数 2本

切梁配置 等間隔

No	端部からの 距離(m)
1 2	0. 000 4. 404

均しコンクリート

厚さ t 150 mm

1.3 考え方

1.3.1 縦梁

縦梁の設計方法 単純ばり法 縦梁最上段スパンの考え方 単純ばり

1.3.2 均しコンクリート

許容圧縮応力度 σ ca 5.5 N/mm 2

断面積計算に使用する低減係数 λ 1.000 縦梁設計時の支点位置の考え方 立坑底面

1.4 地層データ

地表面天端 G.L. 0.000 m

No	層厚 (m)	土質種類	湿潤単位重量 ッ t (kN/m³)	水中単位重量 ッ (kN/m³)	内部摩擦角	粘着力 Co (kN/m²)	静止土圧係数 K _o
1	4. 000	砂質土	20. 0	11. 0	30.00	0.0	0. 50

※土圧係数:静止土圧係数K。を用いる。

※土圧強度:深度15mまでは直線変化とし、15m以深で一定の土圧分布とする。

1.5 基準値

1.5.1 設計用設定値

(1) 土圧合力Pの作用深さ割合 m 0.55
 (2) 土圧の照査ピッチ 0.5 m
 (3) 水の単位体積重量 γw 10.0 kN/m³

(4) 弹性係数 E 2.000×10⁵ N/mm²

(5) クリープ係数 Fd 1.5(6) 据付角係数 Fk 0.1

(7) 地盤反力係数 Kh 10000 kN/m³

(8) ライナープレートの許容曲げ応力度 σ La 180.0 N/mm² (9) 補強リングの許容曲げ応力度 σ Ha 210.0 N/mm²

(10) 継手板の許容曲げ応力度 $\sigma \, \mathrm{Ha} \, 210.0 \, \mathrm{N/mm^2}$

(11) 縦梁の許容曲げ応力度 σ Sa 210.0 N/mm²

(12)継手板厚t12 mm(13)継手ボルトの本数n6 本

(14) ボルト孔の直径 d 25 mm

(15) ボルトの許容せん断応力度 τa 300.0 N/mm²

1.5.2 鋼材

(1)H形鋼

No	鋼材名称	H (mm)	B (mm)	tw (mm)	tf (mm)	A (cm ²)	w (kg/m)
1	$\begin{array}{c} H-100\times100\times\ 6\times\ 8\\ H-125\times125\times\ 6\times\ 9\\ H-150\times150\times\ 7\times10\\ H-175\times175\times\ 7\times11\\ H-200\times200\times\ 8\times12\\ H-250\times250\times\ 9\times14\\ H-300\times300\times10\times15 \end{array}$	100	100	6. 0	8	21. 59	16. 9
2		125	125	6. 5	9	30. 00	23. 6
3		150	150	7. 0	10	39. 65	31. 1
4		175	175	7. 5	11	51. 42	40. 4
5		200	200	8. 0	12	63. 53	49. 9
6		250	250	9. 0	14	91. 43	71. 8
7		300	300	10. 0	15	118. 40	93. 0

No	鋼材名称	Ix (cm ⁴)	Iy (cm ⁴)	Zx (cm³)	Zy (cm³)	ix (cm)	iy (cm)	i (cm)
1	$ \begin{array}{l} H-100\times 100\times \ 6\times \ 8 \\ H-125\times 125\times \ 6\times \ 9 \\ H-150\times 150\times \ 7\times 10 \\ H-175\times 175\times \ 7\times 11 \\ H-200\times 200\times \ 8\times 12 \\ H-250\times 250\times \ 9\times 14 \\ H-300\times 300\times 10\times 15 \\ \end{array} $	378	134	76	27	4. 18	2. 49	2. 75
2		839	293	134	47	5. 29	3. 13	3. 45
3		1620	563	216	75	6. 40	3. 77	4. 15
4		2900	984	331	112	7. 50	4. 37	4. 80
5		4720	1600	472	160	8. 62	5. 02	5. 50
6		10700	3650	860	292	10. 80	6. 32	6. 91
7		20200	6750	1350	450	13. 10	7. 55	8. 28

(2) ライナープレート

No	鋼 材 名 称	t (mm)	$A (cm^2/m)$	$\frac{Z}{(cm^3/m)}$	$I (cm^4/m)$	B (mm)
1	LinerPlate t2.7 mm	2. 7	39. 76	45. 98	141. 00	62
	LinerPlate t3.2 mm	3. 2	47. 12	54. 30	167. 60	62
	LinerPlate t4.0 mm	4. 0	58. 86	67. 50	210. 40	63
	LinerPlate t4.5 mm	4. 5	66. 22	75. 70	237. 40	63
	LinerPlate t5.3 mm	5. 3	77. 90	88. 70	280. 80	66
	LinerPlate t6.0 mm	6. 0	88. 20	100. 10	319. 40	66
	LinerPlate t7.0 mm	7. 0	102. 90	116. 20	375. 20	66

(3)ボルト

No	ボ	ル	<u>۲</u>	呼	称	$A (cm^2/m)$
1	M16					157. 00

No	ボ	ル	ト	呼	称	$A (cm^2/m)$
2 3 4 5	M18 M20 M22 M24					192. 00 245. 00 303. 00 353. 00

2章 結果一覧

2.1 ライナープレート

断面番号	設計位置 G. L. (m)	設計土圧 (kN/m²)	ライ 短辺	ナープレ	ート応力度 長辺		判定
1	-4. 000	45. 00	0.10 ≦	1.00	0.16 ≦	1.00	0

断面番号	短辺	補強材料	芯力度 長辺	
1	0.21 ≦	1.00	0.22 ≦	1.00

使用材料

断面番号	ライナー プレート t(mm)	補強材名称	補強材 ピッチ (m)
1	2. 7	$H-200\times200\times 8\times12$	1.0

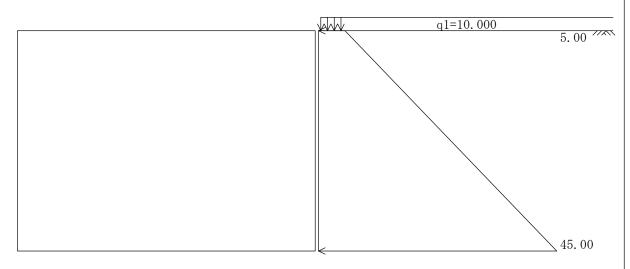
2.2 支保工

縦梁の計算

鋼材名	応力度 (N/mm²)	判定
$H-250\times250\times 9\times14$	8 ≤ 210	0

腹起しの計算

部材番号	設置位置 G. L. (m)	鋼材名	応力度 (N/mm²)	判定
1 2 3 4	-1.500 -2.500	$\begin{array}{c} H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \\ H-300\times300\times10\times15 \end{array}$	$ \begin{array}{rcl} 17 & \leq & 210 \\ 33 & \leq & 210 \\ 50 & \leq & 210 \\ 48 & \leq & 210 \end{array} $	0000


切梁の計算

部材番号	設置位置 G. L. (m)	鋼材名	応力度 (N/mm²)	判定
1 2 3 4	-1. 500 -2. 500	$\begin{array}{l} H-300\times300\times10\times15\\ H-300\times300\times10\times15\\ H-300\times300\times10\times15\\ H-300\times300\times10\times15\\ H-300\times300\times10\times15 \end{array}$	$\begin{array}{ccc} 2 & \leq & 210 \\ 4 & \leq & 210 \\ 6 & \leq & 210 \\ 6 & \leq & 210 \end{array}$	0000

均しコンクリートの計算

軸力	断面積	応力度	判定
(kN)	(mm²)	(N/mm²)	
16. 62	220200.00	$0.1 \leq 5.5$	0

3章 土圧の算定

ライナープレート天端 G.L. 0.000(m) 地表面天端 G.L. 0.000(m) ライナープレート下端 G.L. -4.000(m)

土圧は次式により求める。

 $Ph = K_0 (\Sigma \gamma t \times h + q)$

ただし、

h≦15.0m:15m点の(Σ γt×h+q)に対して土圧係数を掛けた三角形分布とする。

h>15.0m:15m点までは上記の三角形分布、それ以深は15m点における土圧とする。

ここに、

Ph :深さh位置での土圧 (kN/m²)

K₀:静止土圧係数

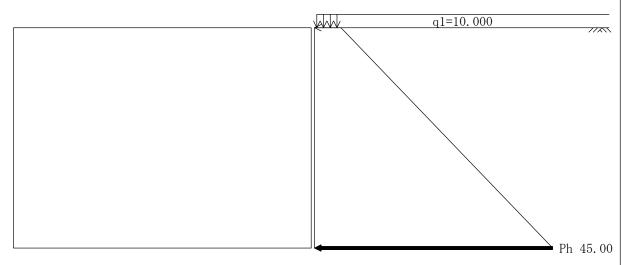
γt:土の湿潤単位体積重量(kN/m³)

ただし、地下水位以下は水中重量γ'を用いる。

h :層厚 (m)

q :上載荷重 (kN/m²)

No	深さ G.L. (m)	層厚 h (m)	単位重量 ッ t (kN/m³)	水中重量 ッ' (kN/m³)	静止 土圧係数 K ₀	$\begin{array}{c} \Sigma \gamma t \times h + q \\ (kN/m^2) \end{array}$	土圧強度 Ph (kN/m²)
1	0. 000 -4. 000	4. 000	20.0	11.0	0.5	10. 00 90. 00	5. 00 45. 00


4章 横断面の設計

4.1 設計位置 G.L. -4.000 m

(1) 土圧強度

設計用土圧は次の大きな方を用いる。

設計区間下端の土圧 G.L. -4.000 m 土圧強度 Ph 45.00 kN/m² 設計区間の最大土圧 G.L. -4.000 m 土圧強度 Ph 45.00 kN/m²

ライナープレート天端 G.L. 0.000(m) 地表面天端 G.L. 0.000(m) ライナープレート下端 G.L. -4.000(m)

(2)断面力

Frame (構造解析) 計算から断面力を求める。

最大曲げモーメント Mmax = 19.24 (kN.m/m) 最大支点反力 Rmax = 69.67 (kN/m) 軸力 (長辺側) N = 54.47 (kN/m) 軸力 (短辺側) N = 42.40 (kN/m)

(3)使用材料

ライナープレート

板厚	t	2.7	(mm)
断面積	AL	39. 76	(cm^2/m)
断面係数	ZL	45. 98	(cm^3/m)
断面二次モーメント	IL	141.00	(cm^4/m)
弹性係数	Е	2.000×10^{5}	(N/mm^2)
許容曲げ応力度	σLa	180.0	(N/mm^2)

補強リング

H形鋼 H-200×200× 8×12

断面積AH63.53 (cm²)断面係数ZH472 (cm³)断面二次モーメントIH4720.00 (cm⁴)許容曲げ応力度σ Ha210.0 (N/mm²)

(4) 応力に対する照査

短辺側

軸力

N=42.40 (kN/m)

最大曲げモーメント

Mmax=19.24 (kN. m/m)

ライナープレートの許容圧縮応力度σLNa

$$\begin{split} \sigma \text{ LNa} &= \left\{ 210 - 1.23 \left(\ \lambda - 18 \right) \right\} \times \frac{\sigma \text{ La}}{\sigma \text{ Ha}} \\ &= \left\{ 210 - 1.23 \left(64.3 - 18 \right) \right\} \times \frac{180}{210} = 131.2 \quad (\text{N/mm}^2) \end{split}$$

補強リングの許容圧縮応力度 σ HNa

 σ HNa=210 (N/mm²)

$$= \frac{\left(\frac{\text{AH}}{\text{LH}}\right) \times \sigma \text{ HNa} \quad \left(\frac{\text{ZH}}{\text{LH}}\right) \times \sigma \text{ Ha}}{\left(\frac{63.53 \times 10^{2}}{1.0}\right) \times 210.0} + \frac{0.971 \times 19.24 \times 10^{6}}{\left(\frac{472.00 \times 10^{3}}{1.0}\right) \times 210} = 0.21 \leq 1.00 \quad \text{OK}$$

ここに、

σL :ライナープレートの応力度

σΗ :補強リングの応力度

σ La:ライナープレートの許容応力度 (N/mm²)

σLNa:ライナープレートの許容圧縮応力度 (N/mm²)

σ Ha:補強リングの許容応力度 (N/mm²)

σ HNa:補強リングの許容圧縮応力度 (N/mm²)

N :軸力 (N/m)

Mmax:曲げモーメント (N.mm/m)

AL :ライナープレートの断面積 (mm²/m)

AH :補強リングの断面積 (mm²)

ZL :ライナープレートの断面係数 (mm³/m)

ZH :補強リングの断面係数 (mm³)

LH :補強リングの間隔 (m)

長辺側

軸力

N=54.47 (kN/m)

最大曲げモーメント

Mmax=19.24 (kN. m/m)

ライナープレートの許容圧縮応力度 σ LNa

$$\begin{split} \sigma \; \text{LNa} &= \frac{1800000}{6700 + \lambda^2} \times \frac{\sigma \; \text{La}}{\sigma \; \text{Ha}} \\ &= \frac{1800000}{6700 + 143. \; 5^2} \times \frac{180}{210} = 56. \; 5 \quad (\text{N/mm}^2) \end{split}$$

補強リングの許容圧縮応力度 σ HNa

$$\sigma$$
 HNa=210 $-$ 1. 23 (λ $-$ 18)

$$=210-1.23(31.3-18)=193.6$$
 (N/mm²)

$$\sigma L = \frac{\alpha L \times N}{AL \times \sigma LNa} + \frac{\beta L \times Mmax}{ZL \times \sigma La}$$

$$= \frac{0.385 \times 54.47 \times 10^{3}}{39.76 \times 10^{2} \times 56.5} + \frac{0.029 \times 19.24 \times 10^{6}}{45.98 \times 10^{3} \times 180} = 0.16 \le 1.00$$

ここに、

σL:ライナープレートの応力度

σΗ :補強リングの応力度

σ La:ライナープレートの許容応力度(N/mm²)

σLNa:ライナープレートの許容圧縮応力度 (N/mm²)

σ Ha:補強リングの許容応力度 (N/mm²)

σ HNa:補強リングの許容圧縮応力度 (N/mm²)

N :軸力 (N/m)

Mmax:曲げモーメント (N.mm/m)

AL :ライナープレートの断面積 (mm²/m)

AH :補強リングの断面積 (mm²)

ZL :ライナープレートの断面係数 (mm³/m)

ZH :補強リングの断面係数 (mm³)

LH :補強リングの間隔 (m)

ライナープレートと補強リングとの断面力の分担率 軸力は断面積の比、曲げモーメントは断面二次モーメントの比で求める。 軸力に対する

ライナープレートの分担率 α L=AL/(AL+AH/LH)

=39.76/(39.76+63.53/1.0)=0.385

補強リングの分担率 α H=(AH/LH)/(AL+AH/LH)

=(63.53/1.0)/(39.76+63.53/1.0)=0.615

曲げモーメントに対する

ライナープレートの分担率 β L=IL/(IL+IH/LH)

=141.00/(141.00+4720.00/1.0)=0.029

補強リングの分担率 β H=(IH/LH)/(IL+IH/LH)

=(4720.00/1.0)/(141.00+4720.00/1.0)=0.971

5章 支保工の設計

5.1 縦梁の設計

使用材料

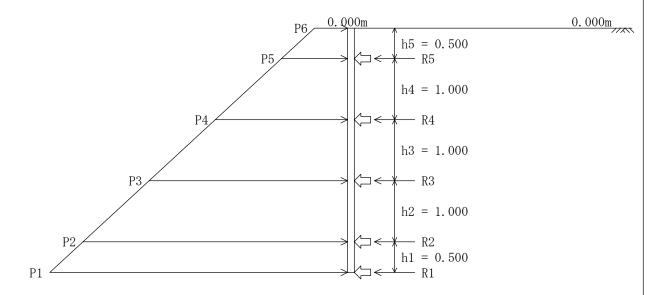
鋼材名 :H-250×250× 9×14

断面係数 Zx:860.00 (mm3)

1) 縦梁に作用する荷重

$$P_1 = 1.534 \cdot Ph = 1.534 \times 45.00 = 69.0 \text{ (kN/m)}$$

$$P_2 = 1.534 \cdot Ph = 1.534 \times 40.00 = 61.4 \text{ (kN/m)}$$


$$P_3 = 1.534 \cdot Ph = 1.534 \times 30.00 = 46.0 \text{ (kN/m)}$$

$$P_4 = 1.534 \cdot Ph = 1.534 \times 20.00 = 30.7 \text{ (kN/m)}$$

$$P_5 = 1.534 \cdot Ph = 1.534 \times 10.00 = 15.3 \text{ (kN/m)}$$

$$P_6 = 1.534 \cdot Ph = 1.534 \times 5.00 = 7.7 \text{ (kN/m)}$$

2) 断面力の計算

支点反力

下端 R1 =
$$\frac{\text{hi}}{6}$$
 (2P₁+P₂)

中間
$$Ri = \frac{h_{i-1}}{6} (P_{i-1} + 2P_i) + \frac{hi}{6} (2P_i + P_{i+1})$$

上端 Rn =
$$\frac{h_{n-1}}{6}$$
 (2P_n+P_{n-1})

ここに、

Rx:支点反力(kN)

Px:縦梁設置位置に生じる反力 (kN/m) hi:腹起し間隔または切梁の間隔 (m)

$$R1 = 16.62 \text{ (kN)} \text{ [G. L. } -4.000\text{m]}$$

$$R2 = 44.10$$
 (kN) [G.L. -3.500 m]

$$R3 = 46.02 \text{ (kN)} [G. L. -2.500m]$$

$$R4 = 30.68 \text{ (kN)} [G.L. -1.500m]$$

$$R5 = 10.23+5.75=15.98$$
 (kN) [G.L. $-0.500m$]

スパン	腹起しまたは切梁間隔
下端より	hi(m)
1	0.500
2	1.000
3	1.000
4	1.000

曲げモーメント

$$Mxi = R1 \cdot Xo - \frac{1}{2} (P_{i} \cdot Xo^{2}) + \frac{1}{6hi} ((P_{i} - P_{i+1}) \cdot Xo^{3})$$

$$Xoi = \frac{P_{i} - \sqrt{P_{i}^{2} - 2(P_{i} - P_{i+1}) \frac{R1}{hi}}}{P_{i} - P_{i}} \cdot hi$$

ここに、

Mxi:iスパンの下端からx点の曲げモーメント (kN.m)

Xoi:iスパンの下端から最大曲げモーメントの生じる位置 (m)

スパン	曲げモーメント Mxi (kN.m)	曲げモーメントの 生じる位置 Xoi (m)
1	2. 04	0. 248
2	6. 72	0. 488
3	4. 80	0. 483
4	2. 89	0. 472

したがって最大曲げモーメントMmaxは、

Mmax=6.72 (kN.m)

応力度

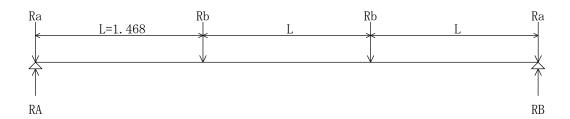
$$\sigma \max = \frac{\text{Mmax}}{\text{Zx}}$$

$$= \frac{6.72 \times 10^6}{860.00 \times 10^3}$$

$$= 7.81 \leq \sigma \text{ Sa = 210 (N/mm²)} \quad \text{OK}$$
 $\subset \subset \C$

σ max:縦梁の応力度 (N/mm²)

5.2 腹起しの設計


[1段目:G.L.-0.500m]

使用材料

鋼材名 :H-300×300×10×15

断面係数 Zx:1350.00 (mm³)

1)腹起しに作用する荷重

$$Ra = 8.0 (kN)$$

$$Rb = 16.0 (kN)$$

2)応力度の照査

支点反力

$$RA' = Ra + Rb$$

$$= 8.0+16.0 = 24.02 \text{ (kN)}$$

最大曲げモーメント

$$Mmax = Rb \times L$$

$$= 16.0 \times 1.468 = 23.46 \text{ (kN)}$$

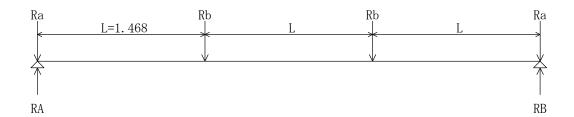
応力度

$$\sigma = \frac{\text{Mmax}}{\text{Zx}}$$
$$= \frac{23.46 \times 10^6}{1350.00 \times 10^3}$$

= 17.38
$$\leq \sigma$$
 Sa =210 (N/mm²) OK

ここに、

σ:腹起しの応力度 (N/mm²)


[2段目:G.L. -1.500m]

使用材料

鋼材名 :H-300×300×10×15

断面係数 Zx:1350.00 (mm³)

1)腹起しに作用する荷重

$$Ra = 15.4 (kN)$$

$$Rb = 30.7 (kN)$$

2) 応力度の照査

支点反力

$$RA' = Ra + Rb$$

$$= 15.4+30.7 = 46.12 \text{ (kN)}$$

最大曲げモーメント

$$Mmax = Rb \times L$$

$$= 30.7 \times 1.468 = 45.04 \text{ (kN)}$$

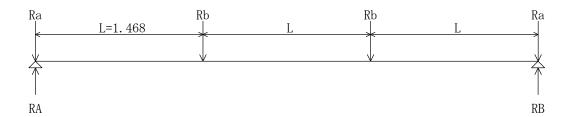
応力度

$$\sigma = \frac{\text{Mmax}}{\text{Zx}}$$
$$= \frac{45.04 \times 10^6}{1350.00 \times 10^3}$$

= 33.36
$$\leq$$
 σ Sa =210 (N/mm²) OK

ここに、

σ:腹起しの応力度 (N/mm²)


[3段目:G.L. -2.500m]

使用材料

鋼材名 :H-300×300×10×15

断面係数 Zx:1350.00 (mm³)

1)腹起しに作用する荷重

$$Ra = 23.2 (kN)$$

$$Rb = 46.0 (kN)$$

2) 応力度の照査

支点反力

$$RA' = Ra+Rb$$

$$= 23.2+46.0 = 69.18 \text{ (kN)}$$

最大曲げモーメント

$$Mmax = Rb \times L$$

$$= 46.0 \times 1.468 = 67.56$$
 (kN)

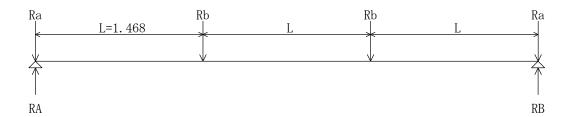
応力度

$$\sigma = \frac{\text{Mmax}}{\text{Zx}}$$
$$= \frac{67.56 \times 10^6}{1350.00 \times 10^3}$$

= 50.04
$$\leq \sigma \text{ Sa } = 210 \text{ (N/mm}^2)$$
 OK

ここに、

σ:腹起しの応力度 (N/mm²)


[4段目:G.L. -3.500m]

使用材料

鋼材名 :H-300×300×10×15

断面係数 Zx:1350.00 (mm³)

1)腹起しに作用する荷重

$$Ra = 22.2 (kN)$$

$$Rb = 44.1 (kN)$$

2) 応力度の照査

支点反力

$$RA' = Ra+Rb$$

$$= 22.2+44.1 = 66.29 \text{ (kN)}$$

最大曲げモーメント

$$Mmax = Rb \times L$$

$$= 44.1 \times 1.468 = 64.74 \text{ (kN)}$$

応力度

$$\sigma = \frac{\text{Mmax}}{\text{Zx}}$$

$$= \frac{64.74 \times 10^6}{1350.00 \times 10^3}$$

= 47.96
$$\leq$$
 σ Sa =210 (N/mm²) OK

ここに、

σ:腹起しの応力度 (N/mm²)

5.3 切梁の設計

[1段目:G.L. -0.500m]

使用材料

鋼材名 :H-300×300×10×15

断面積 A:118.40 (mm²)

1)軸力

$$N = 24.02 \text{ (kN)}$$

2) 軸圧縮応力度

$$\sigma = \frac{N}{A}$$

$$= \frac{24.02 \times 10^{3}}{118.40 \times 10^{2}}$$

$$= 2 \leq \sigma \text{ Sb } =210 \text{ (N/mm}^{2}) \text{ OK}$$

ここに、

σ:切梁の軸圧縮応力度 (N/mm²)

N:軸力(kN)

A:鋼材の断面積 (mm²)

許容圧縮応力度σSb

$$\sigma$$
 Sb = 210 (N/mm²)

細長比 λ

$$\lambda = \frac{Lk}{i}$$

$$= \frac{1121}{7.55 \times 10}$$

$$= 14.8$$

ここに、

Lk:座屈長 (mm)

Lk = S-補強リング厚さ $-2 \times$ 縦梁高さ(H1) $-2 \times$ 腹起し高さ(H2) = 2421 $-200-2 \times 250-2 \times 300$

= 1121 (mm)

i:断面二次半径(基準値のiy)

[2段目:G.L. -1.500m]

使用材料

鋼材名 :H-300×300×10×15

断面積 A:118.40 (mm²)

1)軸力

$$N = 46.12 \text{ (kN)}$$

2) 軸圧縮応力度

$$\sigma = \frac{N}{A}$$

$$= \frac{46.12 \times 10^{3}}{118.40 \times 10^{2}}$$

= 4
$$\leq$$
 σ Sb =210 (N/mm²) OK

ここに、

σ:切梁の軸圧縮応力度 (N/mm²)

N:軸力(kN)

A:鋼材の断面積 (mm²)

許容圧縮応力度 σ Sb

$$\sigma \text{ Sb} = 210 \text{ (N/mm}^2)$$

細長比 λ

$$\lambda = \frac{Lk}{i}$$

$$= \frac{1121}{7.55 \times 10}$$

$$= 14.8$$

ここに、

Lk:座屈長 (mm)

Lk = S-補強リング厚さ-2×縦梁高さ(H1)-2×腹起し高さ(H2)

 $= 2421 - 200 - 2 \times 250 - 2 \times 300$

= 1121 (mm)

i:断面二次半径(基準値のiy)

[3段目:G.L. -2.500m]

使用材料

鋼材名 :H-300×300×10×15

断面積 A:118.40 (mm²)

1)軸力

$$N = 69.18 \text{ (kN)}$$

2) 軸圧縮応力度

$$\sigma = \frac{N}{A}$$

$$= \frac{69.18 \times 10^{3}}{118.40 \times 10^{2}}$$

= 6
$$\leq \sigma$$
 Sb =210 (N/mm²) OK

ここに、

σ:切梁の軸圧縮応力度 (N/mm²)

N:軸力(kN)

A:鋼材の断面積 (mm²)

許容圧縮応力度 σ Sb

$$\sigma \text{ Sb} = 210 \text{ (N/mm}^2)$$

細長比 λ

$$\lambda = \frac{Lk}{i}$$

$$= \frac{1121}{7.55 \times 10}$$

$$= 14.8$$

ここに、

Lk:座屈長 (mm)

Lk = S-補強リング厚さ-2×縦梁高さ(H1)-2×腹起し高さ(H2)

 $= 2421 - 200 - 2 \times 250 - 2 \times 300$

= 1121 (mm)

i:断面二次半径(基準値のiy)

[4段目:G.L. -3.500m]

使用材料

鋼材名 :H-300×300×10×15

断面積 A:118.40 (mm²)

1)軸力

$$N = 66.29 \text{ (kN)}$$

2) 軸圧縮応力度

$$\sigma = \frac{N}{A}$$

$$= \frac{66.29 \times 10^{3}}{118.40 \times 10^{2}}$$

= 6
$$\leq \sigma$$
 Sb =210 (N/mm²) OK

ここに、

σ:切梁の軸圧縮応力度 (N/mm²)

N:軸力(kN)

A:鋼材の断面積 (mm²)

許容圧縮応力度 σ Sb

$$\sigma \text{ Sb} = 210 \text{ (N/mm}^2)$$

細長比 λ

$$\lambda = \frac{Lk}{i}$$

$$= \frac{1121}{7.55 \times 10}$$

$$= 14.8$$

ここに、

Lk:座屈長 (mm)

Lk = S-補強リング厚さ-2×縦梁高さ(H1)-2×腹起し高さ(H2)

 $= 2421 - 200 - 2 \times 250 - 2 \times 300$

= 1121 (mm)

i:断面二次半径(基準値のiy)

5.4 均しコンクリートの設計

1)軸力

均しコンクリートの受ける軸力Nは、均しコンクリート位置における縦梁の支点反力とする。

N = 16.62 (kN)

2) 断面積

 $A = t \cdot 1 \cdot \lambda$

 $= 150 \times (1.468 \times 10^{3}) \times 1.000$

 $= 220200.00 \, (mm^2)$

ここに、

A:均しコンクリートの断面積 (mm²)

t:均しコンクリートの厚さ (mm)

1:縦梁間隔 (m)

λ:低減係数

3) 軸圧縮応力度

$$\sigma c = \frac{N \times 10^{3}}{A}$$
$$= \frac{16.62 \times 10^{3}}{220200.00}$$

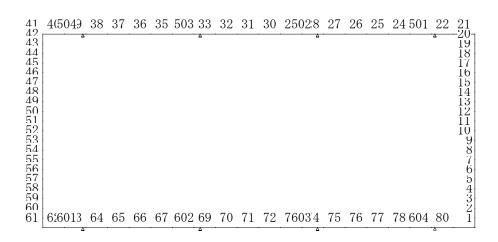
= 0.1 \leq σ ca =5.5 (N/mm²) OK

ここに、

σc:均しコンクリートの軸圧縮応力度 (N/mm²)

N :均しコンクリートの受ける軸力 (kN)

A :均しコンクリートの断面積 (mm²)


σ ca:許容圧縮応力度

6章 構造解析結果

6.1 横断面の設計 G.L. -4.000 m

・格点数 : 88・部材数 : 88・荷重ケース数 : 1・組み合せケース数 : 0

■ 構造図

■ 格点座標データ

格点番号	X 座 標 (m)	Y 座 標 (m)
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2. 7020 2. 7020	-1. 2105 -1. 0894 -0. 9684 -0. 8474 -0. 7263 -0. 6053 -0. 4842 -0. 3632 -0. 2421 -0. 1211 0. 0000 0. 1211 0. 2421 0. 3631 0. 4842 0. 6053 0. 7263 0. 8473 0. 9684 1. 0895
21 22 23	2. 7020 2. 4318 2. 1616	1. 2105 1. 2105 1. 2105

番号	X 座 標 (m)	Y 座 標 (m)
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 66 67 68 69 60 61 62 63 64 65 66 67 67 77 77 77 77 77 77 77	(m) 1. 8914 1. 6212 1. 3510 1. 0808 0. 8106 0. 5404 0. 2702 0. 0000 -0. 2702 -0. 5404 -0. 8106 -1. 0808 -1. 3510 -1. 6212 -1. 8914 -2. 1616 -2. 4318 -2. 7020 -2. 70	(m) 1. 2105
70 71 72 73 74 75 76 77 78 79 80 501 502 503 504 601 602	0. 0000 0. 2702 0. 5404 0. 8106 1. 0808 1. 3510 1. 6212 1. 8914 2. 1616 2. 4318 2. 2020 0. 7340 -0. 7340 -2. 2020 -2. 2020 -0. 7340	-1. 2105 -1. 2105 -1. 2105
	27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 66 67 66 67 77 78 78 79 80 80 80 80 80 80 80 80 80 80	27 1. 0808 28 0. 8106 29 0. 5404 30 0. 2702 31 0. 0000 32 -0. 2702 33 -0. 5404 34 -0. 8106 35 -1. 0808 36 -1. 3510 37 -1. 6212 38 -1. 8914 40 -2. 4318 41 -2. 7020 42 -2. 7020 43 -2. 7020 44 -2. 7020 45 -2. 7020 46 -2. 7020 47 -2. 7020 48 -2. 7020 49 -2. 7020 50 -2. 7020 51 -2. 7020 52 -2. 7020 53 -2. 7020 54 -2. 7020 55 -2. 7020 56 -2. 7020 57 -2. 7020 58 -2. 7020 59

■ 材質データ

材質番号	ヤング係数 E(kN/m²)	線 膨 張 係 数 α(/℃)
1	2.000000E+008	0.000000E+000

■ 断面データ

断面番号	断 面 積 A(m²)	断面2次モーメント I (m⁴)	
1	3. 976000E-003	1. 410000E-006	

■ 部材データ

1 司/初	<i>y - y</i>		
部材番号	格点番号 i- j	部 材 長 (m)	材端条件 i- j
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 66	1- 2 2- 3 3- 4 4- 5 5- 6 6- 7 7- 8 8- 9 9- 10 10- 11 11- 12 12- 13 13- 14 14- 15 15- 16 16- 17 17- 18 18- 19 19- 20 20- 21 41- 42 42- 43 43- 44 44- 45 45- 46 46- 47 47- 48 48- 49 49- 50 50- 51 51- 52 52- 53 53- 54 54- 55 55- 56 56- 57 57- 58 58- 59 59- 60 60- 61 21- 22 22- 501 501- 23 23- 24 24- 25 25- 26 26- 27 27- 28 28- 502 502- 29 29- 30 30- 31 31- 32 32- 33 33- 503 503- 34 34- 35 35- 36 36- 37 37- 38 38- 39 39- 504 504- 40 40- 41 61- 62 62- 601	0. 1211 0. 1210 0. 1211 0. 1211 0. 1211 0. 1211 0. 1211 0. 1211 0. 1211 0. 1211 0. 1211 0. 1211 0. 1210 0. 1211 0. 1210 0. 1211 0. 1210 0. 1211 0. 1210 0. 1211 0. 1210 0. 1211 0. 1210 0. 121	剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛

部材番号	格点番号	部 材 長	材端条件
	i- j	(m)	i-j
67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88	601 — 63 63 — 64 64 — 65 65 — 66 66 — 67 67 — 68 68 — 602 602 — 69 69 — 70 70 — 71 71 — 72 72 — 73 73 — 603 603 — 74 74 — 75 75 — 76 76 — 77 77 — 78 78 — 79 79 — 604 604 — 80 80 — 1	0. 0404 0. 2702 0. 2702 0. 2702 0. 2702 0. 2702 0. 0766 0. 1936 0. 2702	剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛剛

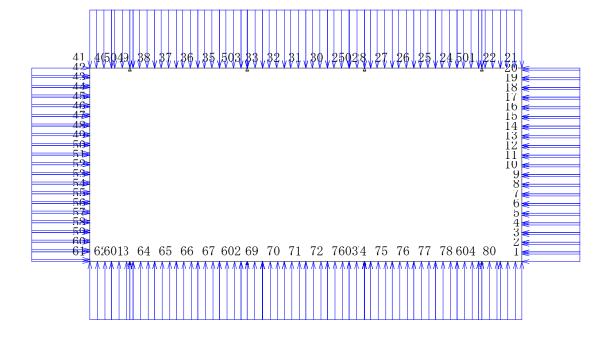
■ 支点データ

支点ケース:1

格点番号	支点コード	K _x (kN/m)	K _Y (kN/m)	K _M (kN.m∕rad)
501 502 503 504 601 602 603 604	ピンXローラー ピンXローラー ピンXローラー ピンXローラー ピンXローラー ピンXローラー ピンXローラー ピンXローラー	ピンXローラー ピンXローラー ピンXローラー ピンXローラー ピンXローラー ピンXローラー ピンXローラー ピンXローラー 自由		由由由由由由由由由自

■ 荷重データ

◇荷重ケース [1]


荷重タイトル[基本荷重]

支点ケース [1]

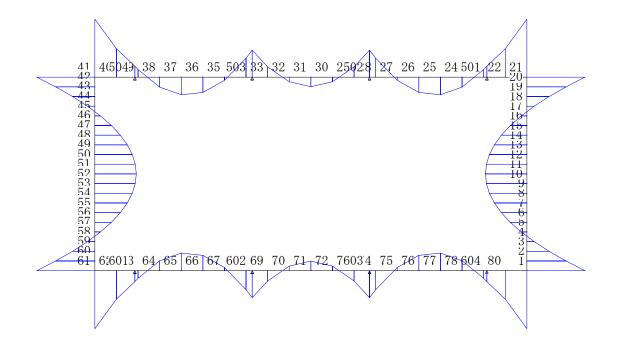
• 部材分布荷重

荷重種別	載荷開始部材番号	載荷終了部材番号	i端側 荷重強度 (kN/m, kN・m/m)	j端側 荷重強度 (kN/m, kN・m/m)	i端側 載荷位置 (m)	j端側 載荷位置 (m)
部材直角方向	1	20	45. 00	45. 00	0.000	0.000
部材直角方向	21	40	45. 00	45. 00	0.000	0.000
部材直角方向	41	64	45. 00	45. 00	0.000	0.000
部材直角方向	65	88	45. 00	45. 00	0.000	0.000

◇ 荷重図

◇基本荷重ケース 1 基本荷重

支点 番号	水平反力 $R_X(kN)$ 鉛直反力 $R_Y(kN)$		回転反力 R _M (kN)
501 502 503 504 601 602 603 604	0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000	9. 524 69. 668 69. 668 9. 524 -9. 524 -69. 668 -69. 524	0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000


◇基本荷重ケース 1 基本荷重

部材			着目	i端からの 距離 (m)	曲げモーメント M(kN.m)	せん断力 S(kN)	軸 力 N(kN)
1(1-	2)	i	0.000	19. 241	-54. 473	-42. 398 -42. 308
2(2-	3)	j i	0. 121 0. 000	12. 977 12. 977	-49. 025 -49. 025	-42. 398 -42. 398
3(3-	4)	j i	0. 121 0. 000	7. 372 7. 372	-43. 578 -43. 578	-42. 398 -42. 398
			j	0. 121	2. 427	-38. 131	-42. 398
4(4-	5)	i j	0. 000 0. 121	2. 427 -1. 859	-38. 131 -32. 683	-42. 398 -42. 398
5(5-	6)	i j	0. 000 0. 121	-1. 859 -5. 486	-32. 683 -27. 236	-42. 398 -42. 398
6(6-	7)	i	0.000	-5. 486	-27. 236	-42. 398
7(7-	8)	j i	0. 121 0. 000	-8. 453 -8. 453	-21. 789 -21. 789	-42. 398 -42. 398
8(8-	9)	j i	0. 121 0. 000	-10. 761 -10. 761	-16. 342 -16. 342	-42. 398 -42. 398
			j	0. 121	-12. 409	-10.895	-42. 398
9(9-	10)	i j	0. 000 0. 121	-12. 409 -13. 398	-10. 895 -5. 447	-42. 398 -42. 398
10(10-	11)	i	0.000	-13. 398	-5. 447	-42. 398
11(11-	12)	j i	0. 121 0. 000	-13. 728 -13. 728	0. 000 0. 000	-42. 398 -42. 398
12(12-	13)	j i	0. 121 0. 000	-13. 398 -13. 398	5. 447 5. 447	-42. 398 -42. 398
			j	0. 121	-12. 409	10.895	-42. 398
13 (13-	14)	i j	0. 000 0. 121	-12. 409 -10. 761	10. 895 16. 342	-42. 398 -42. 398
14(14-	15)	i	0.000	-10. 761	16. 342	-42. 398
15 (15-	16)	j i	0. 121 0. 000	-8. 453 -8. 453	21. 789 21. 789	-42. 398 -42. 398
16(16-	17)	j i	0. 121 0. 000	-5. 486 -5. 486	27. 236 27. 236	-42. 398 -42. 398
			j	0. 121	-1.859	32. 684	-42. 398
17 (17-	18)	i j	0. 000 0. 121	-1. 859 2. 427	32. 684 38. 131	-42. 398 -42. 398
18 (18-	19)	i	0.000	2. 427 7. 372	38. 131	-42. 398 -42. 398
19 (19-	20)	j i	0. 121 0. 000	7. 372	43. 578 43. 578	-42. 398
20(20-	21)	j i	0. 121 0. 000	12. 977 12. 977	49. 025 49. 025	-42. 398 -42. 398
			j	0. 121	19. 241	54. 473	-42. 398
21 (41-	42)	i j	0. 000 0. 121	19. 241 12. 977	-54. 473 -49. 025	-42. 398 -42. 398
22 (42-	43)	i	0. 000 0. 121	12. 977 7. 372	-49. 025 -43. 578	-42. 398 -42. 398
23 (43-	44)	j i	0.000	7. 372	-43. 578	-42. 398
24(44-	45)	j i	0. 121 0. 000	2. 427 2. 427	-38. 131 -38. 131	-42. 398 -42. 398
			j	0. 121	-1.859	-32.684	-42. 398
25 (45-	46)	i j	0. 000 0. 121	-1. 859 -5. 486	-32. 684 -27. 236	-42. 398 -42. 398
26 (46-	47)	i j	0. 000 0. 121	-5. 486 -8. 453	-27. 236 -21. 789	-42. 398 -42. 398
27 (47-	48)	i	0.000	-8. 453	-21. 789	-42. 398
28 (48-	49)	j i	0. 121 0. 000	-10. 761 -10. 761	-16. 342 -16. 342	-42. 398 -42. 398
29 (49-	50)	j i	0. 121 0. 000	-12. 409 -12. 409	-10. 894 -10. 895	-42. 398 -42. 398
			j	0. 121	-13. 398	-5. 447	-42. 398
30 (50-	51)	i j	0. 000 0. 121	-13. 398 -13. 728	-5. 447 0. 000	-42. 398 -42. 398
31(51-	52)	i	0. 000 0. 121	-13. 728 -13. 398	0. 000 5. 447	-42. 398 -42. 398
32 (52-	53)	j i	0.000	-13. 398	5. 447	-42. 398
33 (53-	54)	j i	0. 121 0. 000	-12. 409 -12. 409	10. 895 10. 895	-42. 398 -42. 398
			j	0. 121	-10. 761	16. 342	-42. 398
34(54-	55)	i j	0. 000 0. 121	-10. 761 -8. 453	16. 342 21. 789	-42. 398 -42. 398
35 (55-	56)	i	0. 000 0. 121	-8. 453 -5. 486	21. 789 27. 236	-42. 398 -42. 398
36(56-	57)	j i	0.000	-5. 486	27. 236	-42. 398
37(57-	58)	j i	0. 121 0. 000	-1. 859 -1. 859	32. 684 32. 684	-42. 398 -42. 398
			j	0. 121	2. 427	38. 131	-42. 398
38 (58-	59)	i j	0. 000 0. 121	2. 427 7. 372	38. 131 43. 578	-42. 398 -42. 398

部材	着目	i端からの 距離 (m)	曲げモーメント M(kN.m)	せん断力 S(kN)	軸 力 N(kN)
39 (59- 60)	i	0.000	7. 372	43. 578	-42. 398
40 (60- 61)	j i	0. 121 0. 000	12. 977 12. 977	49. 025 49. 025	-42. 398 -42. 398
	j i	0. 121	19. 241	54. 473 -42. 398	-42. 398 -54. 473
	j i	0. 000 0. 270	19. 241 9. 428	-30. 239	-54. 473 -54. 473
42 (22- 501)		0. 000 0. 230	9. 428 3. 667	-30. 239 -19. 898	-54. 473 -54. 473
43 (501- 23)	j i	0.000	3. 667	-29. 422	-54. 473
44 (23- 24)	j i	0. 040 0. 000	2. 515 2. 515	-27. 604 -27. 604	-54. 473 -54. 473
45 (24- 25)	j i	0. 270 0. 000	-3. 300 -3. 300	-15. 445 -15. 445	-54. 473 -54. 473
46 (25- 26)	j	0. 270	-5.831	-3. 286 -3. 286	-54. 473
	j i	0. 000 0. 270	-5. 831 -5. 076	8.873	-54. 473 -54. 473
47 (26- 27)		0. 000 0. 270	-5. 076 -1. 036	8. 873 21. 032	-54. 473 -54. 473
48 (27- 28)	j i	0.000	-1.036	21. 032	-54. 473
49 (28- 502)	j i	0. 270 0. 000	6. 290 6. 290	33. 191 33. 191	-54. 473 -54. 473
50 (502- 29)	j i	0. 077 0. 000	8. 964 8. 964	36. 638 -33. 030	-54. 473 -54. 473
	j i	0. 194	3. 413	-24. 318	-54. 473
51 (29- 30)		0. 000 0. 270	3. 413 -1. 515	-24. 318 -12. 159	-54. 473 -54. 473
52 (30- 31)	j i	0. 000 0. 270	-1. 515 -3. 158	-12. 159 0. 000	-54. 473 -54. 473
53 (31- 32)	j i	0.000	-3. 158	0.000	-54. 473
54 (32- 33)	j i	0. 270 0. 000	−1. 515 −1. 515	12. 159 12. 159	-54. 473 -54. 473
55 (33 – 503)	j i	0. 270 0. 000	3. 413	24. 318	-54. 473 -54. 473
	j	0. 194	3. 413 8. 964	24. 318 33. 030	-54. 473
56 (503- 34)		0. 000 0. 077	8. 964 6. 290	-36. 638 -33. 191	-54. 473 -54. 473
57 (34- 35)	j i	0.000	6. 290	-33. 191	-54. 473
58 (35- 36)	j i	0. 270 0. 000	-1. 036 -1. 036	-21. 032 -21. 032	-54. 473 -54. 473
59 (36- 37)	j i	0. 270 0. 000	-5. 076 -5. 076	-8. 873 -8. 873	-54. 473 -54. 473
	j	0.270	-5.831	3. 286	-54. 473
60 (37- 38)	j i	0. 000 0. 270	-5. 831 -3. 300	3. 286 15. 445	-54. 473 -54. 473
61 (38- 39)	i j	0. 000 0. 270	-3. 300 2. 515	15. 445 27. 604	-54. 473 -54. 473
62 (39- 504)	i	0.000	2. 515	27.604	-54. 473
63 (504- 40)	j i	0. 040 0. 000	3. 667 3. 667	29. 422 19. 898	-54. 473 -54. 473
64 (40- 41)	j i	0. 230 0. 000	9. 428 9. 428	30. 239 30. 239	-54. 473 -54. 473
	j	0.270	19. 241	42. 398 -42. 398	-54. 473
65 (61- 62)	j i	0. 000 0. 270	19. 241 9. 428	-30. 239	-54. 473 -54. 473
66 (62- 601)		0. 000 0. 230	9. 428 3. 667	-30. 239 -19. 898	-54. 473 -54. 473
67 (601- 63)	j i	0.000	3.667	-29. 422 -27. 604	-54. 473 -54. 473
68 (63- 64)	j i	0. 040 0. 000	2. 515 2. 515	-27.604	-54. 473
69 (64- 65)	j i	0. 270 0. 000	-3. 300 -3. 300	-15. 445 -15. 445	-54. 473 -54. 473
	j	0. 270	-5.831	-3. 286	-54. 473
70 (65- 66)	j i	0. 000 0. 270	-5. 831 -5. 076	-3. 286 8. 873	-54. 473 -54. 473
71 (66- 67)		0. 000 0. 270	-5. 076 -1. 036	8. 873 21. 032	-54. 473 -54. 473
72 (67- 68)	j i	0.000	-1.036	21. 032	-54. 473
73 (68- 602)	j i	0. 270 0. 000	6. 290 6. 290	33. 191 33. 191	-54. 473 -54. 473
74 (602- 69)	j i	0. 077 0. 000	8. 964 8. 964	36. 638 -33. 030	-54. 473 -54. 473
	j	0. 194	3. 413	-24. 318	-54. 473
75 (69- 70)		0. 000 0. 270	3. 413 -1. 515	-24. 318 -12. 159	-54. 473 -54. 473
76 (70- 71)	j i i	0. 000 0. 270	-1. 515 -3. 158	-12. 159 0. 000	-54. 473 -54. 473
77 (71- 72)	j i	0. 270	-3. 158	0.000	-54. 473

部材	着目	i端からの 距離 (m)	曲げモーメント M(kN.m)	せん断力 S(kN)	軸 力 N(kN)
	j i	0. 270	-1. 515	12. 159	-54. 473
78 (72- 73)	i	0.000	-1. 515	12. 159	-54. 473
EO (EO COO)	j	0. 270	3. 413	24. 318	-54. 473
79 (73- 603)	i	0.000	3. 413	24. 318	-54. 473
80 (603- 74)	J i	0. 194 0. 000	8. 964 8. 964	33. 030 -36. 638	-54. 473 -54. 473
00 (000 74)		0.000	6. 290	-33. 191	-54. 473
81 (74- 75)	j i	0.000	6. 290	-33. 191	-54. 473
01(11 10)		0. 270	-1. 036	-21. 032	-54, 473
82 (75- 76)	J i	0.000	-1. 036	-21.032	-54. 473
(0. 270	-5. 076	-8. 873	-54. 473
83 (76- 77)	J i	0.000	-5.076	-8.873	-54. 473
	j i	0.270	-5.831	3. 286	-54. 473
84 (77-78)	i	0.000	-5. 831	3. 286	-54. 473
	j i	0. 270	-3. 300	15. 445	-54. 473
85 (78-79)	i	0.000	-3. 300	15. 445	-54. 473
00/ 50 004)	j	0. 270	2. 515	27. 604	-54. 473
86 (79 – 604)	i	0.000	2. 515	27. 604	-54. 473
97(604_ 90)	J	0.040	3. 667	29. 422	-54. 473
87 (604-80)	i	0. 000 0. 230	3. 667 9. 428	19. 898 30. 239	-54. 473 -54. 473
88 (80- 1)	j i	0. 230	9. 428 9. 428	30. 239 30. 239	-54. 473 -54. 473
00 (00 1)	j	0.000	9. 428 19. 241	42. 398	-54. 473

◇ 断面力図

