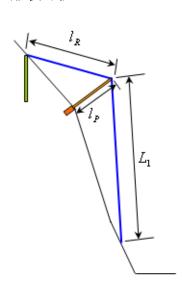
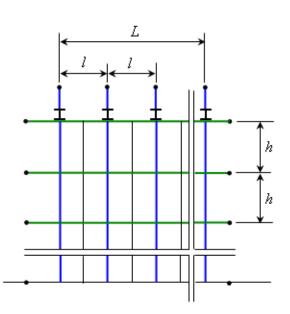
落石対策工の設計計算 -ポケット式落石防護網-

出力例

目次	
1章 設計条件	1
1.1 基本条件	1
1.2 形状寸法	1
1.3 部材条件	2
1.4 基準値	2
1.4.1 設計用設定値	2
1.4.2 ワイヤロープ	2
1.4.3 金網	3
1.4.4 支柱	3
2章 照査結果一覧	4
2.1 可能吸収エネルギー	4
2.2 部材	4
3章 安全性の照査	5
3.1 落石の運動エネルギー	5
3.2 部材の検討	5
3.2.1 金網の設計	5
3.2.2 ワイヤロープの設計	6
3.2.3 支柱および吊ロープの設計	7
3.3 可能吸収エネルギーの照査	8
3.3.1 金網の吸収エネルギー	8
3.3.2 横ロープの吸収エネルギー	8
3.3.3 支柱の吸収エネルギー	9
3.3.4 吊ロープの吸収エネルギー	9
3.3.5 衝突の前後におけるエネルギー差	9
3.3.6 可能吸収エネルギーの照査	9

1章 設計条件


1.1 基本条件


対策工の形式 : 『ポケット式落石防護網』

落石の運動エネルギー : 簡易式により算出

落石の重量	W	kN	2. 000
落石の直径	D	m	0. 528
落石の単位体積重量	γs	kN/m^3	26. 000
重力加速度	g	m/sec ²	9.806
落石発生源から斜面衝突位置までの落差	Н	m	15. 320
落石発生源から斜面衝突位置までの平均斜面勾配	θ	度	50.00
等価摩擦係数	μ		0.350
対策工の設置角度	θ_{0}	度	85. 00

1.2 形状寸法

横ロープ長	L	m	40.000
横ロープ間隔	h	m	5. 000
縦ロープ長	L_1	m	10.000
吊ロープ長	1_R	m	8. 000
支柱高さ	1_{P}	m	2. 500
支柱の間隔	1	m	3. 000

1.3 部材条件

(1)ワイヤロープ

部材名称	$3 \times 76/0$ 14.0 ϕ				
弾性係数	Е	$\mathrm{N/mm^2}$	100000		
断面積	A	${\rm cm}^2$	0.78		
降伏張力	Ту	kN	73.6		
破断荷重	Tb	kN	98. 1		

(2)金網

部材名称	$\phi 3.2 \times 50 \times 50$			
許容強度	Pa	kN/m	17. 0	
平均重量	Wn	N/m^2	37. 000	

(3)支柱

部材名称	$\text{H}100\!\times\!100\!\times\!6\!\times\!8$				
材質		SS400			
降伏応力度	σу	N/mm^2	235. 0		
弾性係数	E'	N/mm^2	200000		
断面積	A'	cm^2	21. 59		
断面二次モーメント	Ix	cm ⁴	378		
断面二次半径	iy	cm	2. 49		
支柱の単位質量	ms kg/m 16.9				
支柱基礎	ヒンジ				

1.4 基準値

1.4.1 設計用設定値

	安全率
横ロープ	2.00
縦ロープ	2.00
吊ロープ	3. 00

落石の接触幅係数	С		1. 500
金網の変形係数	K		0. 250
ワイヤロープの初期緊張力	To	kN	5. 000
防護網重量として有効とする支柱スパン数	n		4

1.4.2 ワイヤロープ

No	部材名称	断面積 A (cm²)	降伏張力 Ty(kN)	破断荷重 Tb(kN)
2	$3 \times 76/0$ 18.0 ϕ	1. 29	118. 0	157. 0
	$3 \times 76/0$ 16.0 ϕ	1. 01	88. 5	118. 0
	$3 \times 76/0$ 14.0 ϕ	0. 78	73. 6	98. 1

No	部材名称	断面積 A (cm²)	降伏張力 Ty(kN)	破断荷重 Tb(kN)
4	$3 \times 7 \text{G}/0$ 12.0 ϕ	0. 59	51. 5	68. 6

1.4.3 金網

No	部材名称	素線径 d(mm)	許容張力 Pa(kN/m)
1	$ \phi 4. 0 \times 50 \times 50 \phi 3. 2 \times 50 \times 50 \phi 2. 6 \times 50 \times 50 $	4. 0	26. 5
2		3. 2	17. 0
3		2. 6	11. 2

1.4.4 支柱

No	鋼材名称	H (mm)	B (mm)	tw (mm)	tf (mm)	A (cm ²)	ms (kg/m)
1 2 3	H100×100×6×8 H125×125×6×9 H150×150×7×10	100 125 150	100 125 150	6. 0 6. 5 7. 0	8 9 10	21. 59 30. 00 39. 65	16. 9 23. 6 31. 1
		-				_	

No	鋼材名称	Ix (cm ⁴)	Iy (cm ⁴)	Zx (cm^3)	Zy (cm³)	ix (cm)	iy (cm)	ik (cm)
1	H100×100×6×8	378	134	76	27	4. 18	2. 49	2. 75
2	H125×125×6×9	839	293	134	47	5. 29	3. 13	3. 45
3	H150×150×7×10	1620	563	216	75	6. 40	3. 77	4. 15

2章 照査結果一覧

2.1 可能吸収エネルギー

(1)落石の運動エネルギー(kJ)

落石の運動エネルギー	E_{w}	21. 477
------------	---------	---------

(2)防護網の吸収エネルギー(kJ)

金網	E_{N}	15. 053
横ロープ	\mathbf{E}_{R}	2. 913
支柱	E_{P}	0.000
吊ロープ	E_{HR}	0.072
衝突の前後におけるエネルギー差	E_{L}	14. 807
合計	E _T	32. 845

(3)判定

落石の運動エネルギー	E_w	21. 477
防護網の吸収エネルギー	E_{T}	32. 845
判定		0

2.2 部材

(1)金網

金網は許容強度を基に可能エネルギーを算出しているので問題なし。

(2) ワイヤロープ

使 用 部 材	降伏張力 Ty(kN)	破断強度 Tb(kN)
$3 \times 76/0$ 14.0 ϕ	73. 6	98. 1

	設計張力 T(kN)	安全率 F	照査方法	判定
横ロープ	24. 352	2.00	T < (Tb/F)	0
縦ロープ	7.842	2.00	T < (Tb/F)	0
吊ロープ	8. 474		T < Ty	0

(3)支柱

基部に発生する応力度 σ (N/mm²)	許容軸方向圧縮応力度 σa (N/mm²)	照査方法	判定	
1. 226	715. 1	$\sigma < \sigma a$	0	Ī

3章 安全性の照査

3.1 落石の運動エネルギー

落石運動エネルギーは次式による。

$$E_{W} = \left(1 - \frac{\mu}{\tan \theta}\right) \cdot W \cdot H \cdot \sin^{2} \theta_{0}$$

$$= \left(1 - \frac{0.350}{\tan 50.00}\right) \times 2.000 \times 15.320 \times \sin^{2}(85.00)$$

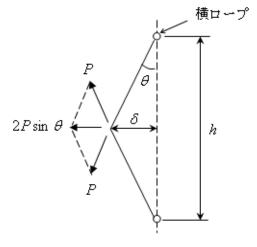
$$= 21.477 \text{ (kJ)}$$

ここに、

Ew: 落石運動エネルギー(k,J)

W : 落石の重量(kN)

H: 落石発生源から衝突位置までの落差(m)


μ : 等価摩擦係数

θ: 落石発生源から衝突位置までの平均斜面勾配(°)

θ₀: 対策工の設置角度(°)

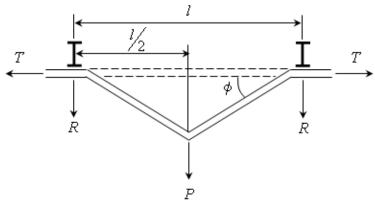
3.2 部材の検討

3.2.1 金網の設計

金網に生ずる引張力は次式により算出する。

$$P = C \cdot D \cdot Pa = 1.500 \times 0.528 \times 17.0 = 13.464$$
 (kN)

ここに、


P: 金網に生ずる張力(kN) C: 落石の接触幅係数

D: 落石の直径(m)

Pa: 幅1m当たりの金網強度(kN/m)

金網は許容強度を基に設計するので、安全性については問題ない。

3.2.2 ワイヤロープの設計

(1) 横ロープ張力

金網張力Pによって横ロープに発生する張力は以下の2式を解いて求める。

$$T = \frac{R}{\sin \phi} = \frac{6.732}{\sin \phi}$$

$$\cos \phi = \frac{1}{1 + \frac{TL}{(E \cdot 10^3) \cdot (A \cdot 10^{-4})}} = \frac{3.000}{3.000 + \frac{T \times 40.000}{100000 \times 0.78 \times 10^{-1}}}$$

ここに、

T: 金網張力Pにより横ロープに発生する張力(kN)

R: 縦ロープを伝達し支柱に作用する力(kN)

$$R = \frac{P}{2} = \frac{13.464}{2} = 6.732 \text{ (kN)}$$

P: 金網に生ずる張力(kN)

1: 支柱間隔(m)

L: 横ロープ長(m)

E: ワイヤロープの弾性係数(N/mm²)

A: ワイヤロープの断面積(cm²)

φ:変形前と変形後の横ロープのなす角(°)

上記の2式を満足するTおよびφは、

$$T = 24.352 \text{ (kN)} < \frac{Tb}{Fa} = \frac{98.1}{2.00} = 49.05 \text{ (kN)}$$
 OK

 $\phi = 16.05 (^{\circ})$

ここに、

Tb: ワイヤロープの破断荷重(kN)

Fa: 横ロープの安全率

(2)縦ロープ張力

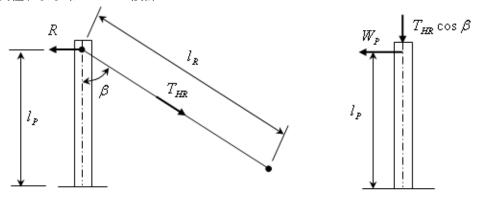
縦ロープ張力の算出は次式による。

$$T_T$$
 = R + (Wn · 10⁻³) · L₁ · 1
= 6.732+37.000×10⁻³×10.000×3.000
= 7.842 (kN) $< \left(\frac{Tb}{Fb}\right) = \frac{98.1}{2.00} = 49.05$ (kN) OK

ここに、

T_T: 縦ロープ張力(kN)

R: 縦ロープを伝達し支柱に作用する力(kN)


Wn: 金網部平均重量(N/m²)

L₁: 縦ロープ長(m) 1 : 支柱間隔(m)

Tb: ワイヤロープの破断荷重(kN)

Fb: 縦ロープ安全率

3.2.3 支柱および吊ロープの設計

(1) 支柱の分担水平力

支柱基礎がヒンジであるので、支柱の分担水平力W。=0とする。

(2) 吊ロープ張力

吊ロープの張力は次式により算出する。

$$T_{HR}$$
 = T_{HR1} + T_{HR0}
= 7.087 + 1.387
= 8.474 (kN) < Ty = 73.6 (kN) OK

ここに、

T_{HR}: 吊ロープの張力(kN)

$$T_{HR1}$$
: 吊ロープの増加張力(kN)
$$T_{HR1} = \frac{R}{\sin\beta} = \frac{6.732}{\sin71.79} = 7.087 \text{ (kN)}$$

T_{HR0}: 吊ロープ初期張力(kN)

$$\begin{split} T_{\text{HRO}} & = \left((W_n \cdot 10^{-3}) \cdot L_1 \cdot 1 + \frac{(\text{ms} \cdot \text{g} \cdot 10^{-3}) \cdot 1_P}{2} \right) \cdot \left(\frac{1}{\sin \beta} \right) \\ & = \left((37.000 \times 10^{-3}) \times 10.000 \times 3.000 + \frac{(16.900 \times 9.806 \times 10^{-3}) \times 2.500}{2} \right) \times \left(\frac{1}{\sin 71.79} \right) \\ & = 1.387 \text{ (kN)} \end{split}$$

Tb: ワイヤロープの破断強度(kN)

Ty: ワイヤロープの降伏張力(kN)

Fc: 吊ロープの安全率(kN) E': 支柱の弾性係数(N/mm²)

1。: 支柱高さ(m) 1 : 支柱間隔(m)

ms: 支柱の単位質量(kg/m)

g : 重力加速度(m/sec²)

 β : 支柱と吊ロープのなす角度($^{\circ}$)

$$\beta = \cos^{-1}\left(\frac{1_{P}}{1_{R}}\right) = \cos^{-1}\left(\frac{2.500}{8.000}\right) = 71.79 \ (^{\circ})$$

W_n: 金網の平均重量(N/m²)

L₁: 縦ロープ長(m)

(3) 支柱基部の応力度

支柱基部に発生する応力度は次式により算出する。

$$\sigma = \frac{(T_{HR} \cdot 10^3) \cdot \cos \beta}{A' \cdot 10^2}$$

$$= \frac{(8.474 \times 10^3) \times \cos 71.79}{21.590 \times 10^2}$$

$$= 1.226 (N/mm^2) < \sigma a = 715.117 (N/mm^2)$$

ここに、

σ: 支柱基部に発生する応力度(N/mm²)

T_{HR}: 吊ロープ張力(kN) A': 支柱の断面積(cm²)

β: 支柱と吊ロープのなす角度(°)

σa: 許容軸方向圧縮応力度(N/mm²)

92
$$< 1_{b}/I_{\gamma} = 100.402 \text{ GOV}$$

$$\sigma a = \frac{12000000}{6700 + \left(\frac{1_{b}}{I_{\gamma}}\right)^{2}} = \frac{12000000}{6700 + 100.402^{2}} = 715.117$$

 l_h : 部材の有効座屈長(mm) (= $l_P \times 10^3 = 2.500 \times 10^3 = 2500.000$)

OK

 I_y : 部材の断面二次半径(mm) (= iy × 10 = 2.490×10 = 24.900)

1。: 支柱高さ(m)

iy: H鋼1本当りのy軸回りの断面二次半径(cm)

3.3 可能吸収エネルギーの照査

3.3.1 金網の吸収エネルギー

金網の吸収エネルギーは次式により算出する。

 $E_N = 2P \sin \theta \cdot \delta = 2 \times 13.464 \times \sin 26.57 \times 1.250 = 15.053$ (kJ)

ここに、

E_N: 金網の吸収エネルギー(kJ)

P: 金網に生ずる張力(kN)

δ: 金網の変位量(m)

 $\delta = K \cdot h = 0.250 \times 5.000 = 1.250$ (m)

K: 金網の変形係数

h: 横ロープ間隔(m)

θ:変形前と変形後の金網のなす角(°)

$$\theta = \tan^{-1}\left(\frac{\delta}{h/2}\right) = \tan^{-1}\left(\frac{1.250}{5.000/2}\right) = 26.57$$
 (°)

3.3.2 横ロープの吸収エネルギー

横ロープの吸収エネルギーは次式により算出する。

$$E_{R} = 2 \cdot \frac{L}{2 (E \cdot 10^{3}) \cdot (A \cdot 10^{-4})} (T^{2} - T_{0}^{2})$$

$$= 2 \times \frac{40.000}{2 \times (100000 \times 10^{3}) \times (0.78 \times 10^{-4})} \times (24.352^{2} - 5.000^{2})$$

$$= 2.913 \text{ (kJ)}$$

ここに、

E_R: 横ロープの吸収エネルギー(kJ)

E: ワイヤロープの弾性係数(N/mm²)

A: ワイヤロープの断面積(cm²)

L: 横ロープ長(m)

T: ネット張力Pによりワイヤロープに発生する張力(kN)

T₀: ワイヤロープの初期張力(kN) (= 5.000 kN)

3.3.3 支柱の吸収エネルギー

支柱基礎がヒンジであるので、支柱の吸収エネルギーE₂=0とする。

3.3.4 吊ロープの吸収エネルギー

吊ロープの吸収エネルギーは次式により算出する。

$$\begin{split} E_{\text{HR}} &= \frac{1_{\text{R}}}{(\text{E} \cdot 10^3) \cdot (\text{A} \cdot 10^{-4})} (T_{\text{HR}}^2 - T_{\text{HRO}}^2) \\ &= \frac{8.000}{(100000 \times 10^3) \times (0.78 \times 10^{-4})} \times (8.474^2 - 1.387^2) \\ &= 0.072 \text{ (kJ)} \end{split}$$

ここに、

E_{IR}: 吊ロープの吸収エネルギー(k,J)

T_{HR} : 吊ロープ張力(kN)

T_{HR0}: 吊ロープ初期張力(kN)

1_R : 吊ロープ長(m)

E : 吊ロープの弾性係数(N/mm²)

A : 吊ロープの断面積(cm²)

3.3.5 衝突の前後におけるエネルギー差

落石が落石防護網に衝突すると、落石と防護網が一体となって運動する。

この場合のエネルギーロスの算出は次式による。

$$E_L = \frac{W'}{W + W'} \cdot E_W = \frac{4.440}{2.000+4.440} \times 21.477 = 14.807 \text{ (kJ)}$$

ここに、

E_L: 落石の衝突前後におけるエネルギー差(kJ)

Ew: 落石の持ち込む運動エネルギー(kJ)

W : 落石重量(kN)

W': 落石防護網重量(kN)

 $W' = n \cdot 1 \cdot L_1 \cdot (Wn \cdot 10^{-3}) = 4 \times 3.000 \times 10.000 \times 37.000 \times 10^{-3} = 4.440 \text{ (kN)}$

n: 落石防護網の質量として有効な範囲(支柱スパンのnスパン分)

1: 支柱間隔(m)

L₁: 縦ロープ長さ(m)

Wn: 金網の平均重量(N/m²)

3.3.6 可能吸収エネルギーの照査

対策工の可能吸収エネルギーの合計は次式による。

$$E_T$$
 = E_N + E_R + E_P + E_{HR} + E_L
= 15.053 + 2.913 + 0.000 + 0.072 + 14.807
= 32.845 > E_W = 21.477 (kJ) OK

ここに、

E_T: 対策工の可能吸収エネルギー(k,J)

E_N: 金網の吸収エネルギー(k.J)

E_R: 横ロープの吸収エネルギー(kJ)

E_P: 支柱の吸収エネルギー(kJ)

E_{HR}: 吊ロープの吸収エネルギー(kJ)

E_{L}	: 落石の衝突前後におけるエネルギー差(kJ)
$E_{\rm w}$: 落石の運動エネルギー(kJ)